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Abstract 

Purpose:  Simulating markets using agent-based models must consider pricing. How‑
ever, the strategic nature of prices limits the development of agent-based models with 
endogenous price competition.

Methods:  I propose an agent-based algorithm based on Game Theory that allows 
us to simulate the pricing in different markets. I test the algorithm in five theoretical 
economic models from the industrial organization literature.

Results:  In all cases, the algorithm is capable of simulating the optimal pricing of 
those markets. It is also tested in two more cases: one in which the original work fails to 
predict the optimal outcome, and another one that is quite complex to solve analyti‑
cally. Lastly, I present two potential extensions of this algorithm: one dynamic, and 
another one based on quantity competition.

Conclusions:  This algorithm opens the door to the extensive inclusion of pricing in 
agent-based models, but also, it helps to establish a link between the industrial organi‑
zation literature and the agent-based modeling.

Keywords:  Agent-based models, Algorithmic game theory, Price optimization, 
Industrial organization
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Background
Prices play an essential role in any market and understanding how they are fixed is a fun-
damental part of the Economic Science. However, complex problems such as social net-
works or the launching of new digital platforms can set new challenges in understanding 
how those prices are fixed.

To tackle these complex problems, some researchers have adopted the agent-based 
modeling approach. But, there is a lack of integration between this approach and the 
industrial organization literature. This lack of integration is clearly depicted by the 
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absence of works that address prices in agent-based models (ABM), despite being con-
sidered an essential variable in markets.1

To address this issue, I propose an algorithm for agent-based models that simulates 
price competition among companies. This algorithm establishes a new link between the 
industrial organization literature and the agent-based modeling. It is based on Game 
Theory, and it guarantees the optimality of consumers’ and companies’ behavior without 
needing to use the equilibrium equations of any theoretical model, nor relying on maxi-
mizing (minimizing) any real function.2 Intuitively, this algorithm resembles the best 
response map but without assuming any particular theoretical model or function. The 
algorithm encompasses two sub-algorithms, one for consumers and another one for 
companies. Both sub-algorithms encompass several behavioral rules that are combined 
to simulate the behavior predicted by Game Theory. In this sense, it is possible to address 
markets with heterogeneous decisions-makers, asymmetric information flows and lev-
els, continuous or discontinuous behaviors, etc. and without assuming that decision-
makers carried out complicated mathematical manipulations, and at the same time, it is 
also possible to guarantee the optimality and rationality of our results.3

We test the algorithm in five different theoretical models, and we prove that the algorithm 
reproduces the Nash equilibria of those models. We also consider two extended versions 
of two theoretical models that are quite complex to solve. We prove that the algorithm also 
works in those cases. Lastly, we consider two more cases. The first one is dynamic, and the 
second one is based on quantity competition. In those two cases, we show that the algo-
rithm is easily adaptable to other frameworks that are not static price-competition games.

This work does not pretend to provide groundbreaking evidence that agent-based 
models are better than other alternatives. We only try to establish a bridge between 
agent-based modeling and the mainstream industrial organization literature. And to do 
so, we apply the agent-base modeling to well-known theoretical models.

Agent‑based models and economic theory. An ongoing issue

The situation of agent-based models in Economics can be summarized as follows: 
Despite the power of ABM, widespread acceptance and publication of this method in the 
highest-level journals has been slow. This is due in large part to the lack of commonly 
accepted standards of how to use ABM rigorously, Rand and Rust (2011). This problem 
is not new, but although some advances are taking place, there is plenty of room for 
improvement.

Rand and Rust (2011) argues that, a common perception of agent-based models is that 
they are “toys” because of the lack of documentation, proper testing or theoretical back-
ground. Although some attempts have been made, theoretical economic models are 
rarely considered in the agent-based model literature.4 Those works which consider a 

1  In the current agent-based [literature] [...] research on the price, the most important attribute of a product, are very 
rare, Diao et al. (2011).
2  It works in both, discrete and continuous frameworks. If the optimum exists, the algorithm can identify it. If it does 
not exist, the algorithm chooses a second-best solution that maximizes the utility (profits) of users (companies) given 
the actions of companies (users) in the local area.
3  We define a rational agent as the one who makes those choices that maximize their subjective utility given a specific 
set of information.
4  In this work, we consider only microeconomic models because they tend to be simpler in the number of relationships 
they take into account than macroeconomic models.
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theoretical framework are a minority, and we only can highlight some examples such as 
Rixen and Weigand (2014), Hamill and Gilbert (2016), Barr and Saraceno (2005) and 
Chang (2011). Nonetheless, they present two shortcomings:

• • They rely on the equilibrium equations of the theoretical models, so the simulated 
markets are constrained by the theoretical assumptions.

• • They tend to assume other interactions among the agents even when the equilib-
rium of the theoretical model does not consider such interactions, which if taken 
into account, may change the equilibrium. Therefore, there is no standard rule or 
procedure to consider how to implement such theoretical frameworks.

Finally, another relevant shortcoming is that they tend to consider competition in quan-
tities, particularly, the Cournot model. For instance, Barr and Saraceno (2005) investi-
gates how environmental and organizational factors affect the equilibrium outcome of a 
repeated Cournot model. Chang (2011) analyzes entry and exit in an industrial market 
characterized by turbulent technological processes and by quantity competition.

Rixen and Weigand (2014) analyzes the diffusion of smart meters and, although they 
try to relax some assumptions, they remain constrained by the Cournot model. Lastly, 
Hamill and Gilbert (2016) shows how Cournot models can be simulated using agent-
based models, but it relies on the equilibrium outcomes of the basic Cournot model as in 
the previous works. There are also other works which do not assume theoretical frame-
works, but assume exogenous and non-optimal prices such as Fuks and Kawa (2009), 
Zhang and Brorsen (2011) or Diao et al. (2011). To the best of our knowledge, only Leeu-
wen and Lijesen (2016) has considered a market with endogenous price competition but, 
it is limited to a Hotelling model, it is designed ad-hoc, it cannot be applied to other 
cases, it makes small but systematic errors when predicting prices, and it is not efficient 
when there are many consumers or companies.

Given this situation, two questions arise:

• • Can theoretical models be simulated following a set of standard rules?
• • Can price competition be implemented in agent-based models following a set of 

common rules in concordance with Game Theory and economic intuitions?

The first question represents the common problem that each economist faces when 
dealing with agent-based models and, probably, it will take some decades to achieve a 
convergence in standards and criteria. On the other hand, the second question is the one 
we are going to answer in this work. We analyze an agent-based algorithm that simu-
lates the pricing behavior that is assumed in theoretical economic models. This algo-
rithm allows us to identify each component individually and to test its validity against 
the theory. The relevant contribution of the algorithm is twofold: First, it does not rely 
on the differentiability of an aggregate equation, but on the optimization of the agents’ 
decisions. Second, it guarantees the optimality of the users’ and companies’ decisions 
(buying decisions and prices respectively) in ABM.
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Experimental: the price‑competition algorithm. Applications to theoretical 
models
The algorithm

The algorithm is designed in a modular way. In this sense, each part of it can be used in 
different contexts and for different purposes. It consists in two sub-algorithms: The con-
sumers’ and the companies’ algorithm. The consumers’ reproduces the buying decisions 
of consumers and allows us to generate demands. The companies’ sub-algorithm repro-
duces the process by which companies choose the price levels. The continuous interac-
tion of both leads us to the equilibrium (or equilibria).

The consumers’ algorithm

Our framework considers that each consumer at each moment of time t has an utility func-
tion U(·). Each consumer considers the utility he/she obtains from each company he/she 
knows. If no company offers a worthy product, U(·) < 0, the consumer abandons the mar-
ket; but if there is a company which offers a valuable product, U(·) ≥ 0, the consumer will 
compare those products and will buy the one that maximizes its utility. All the consumers 
who buy the same product from the same company form the demand addressed to that 
company. In Fig. 1 is depicted a schematic version of the algorithm. Up to this point, this 
algorithm is not new, and similar algorithms can be found in other works. However, this 
algorithm is scalable. It presents four features that differentiate it from other proposals:5 

• • Its modularity. This algorithm can be used independently of the price competition.
• • We do not impose any demand function, the demands are the emergent result of the con-

sumers’ decisions. It only matters how consumers make decisions.
• • Consumers make decisions based on their utility functions, which can be discrete or 

continuous and have as many parameters as necessary. However, those functions are 
flexible, and each consumer has its own utility function. That implies the possibility of 
introducing multi-dimensional heterogeneity, externalities, etc. Also, we do not impose 
fixed utility functions, those utilities can be dynamic.

• • Although we assume perfect information throughout the paper, the algorithm can be 
adapted to deal with those cases in which information is not perfect. For example, we 
can assume there is a network that connects consumers and by which information 
flows.

The companies’ algorithm

This sub-algorithm (Fig. 2) is composed of four sub-sub-algorithms.6 

1.	 In the first algorithm, each company considers a change in prices (increase or 
decrease). The parameter ǫ controls this change (iteration parameter). The algorithm 
requires a starting price that can be any real number.7

5  The pseudo-code is available in the Annex. The consumer’s algorithm corresponds to the first two sub-algorithms of the 
“Static situation of the market”, i.e. utilities and demands.
6  The pseudo-code of those sub-sub-algorithms is in the Annex.
7  There is no range of prices previously fixed. The prices are free to vary, but it is important which is the initial price that 
we choose. It is recommendable to try several different prices with the only condition of not being so high that all the 
utilities are negative.
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Fig. 1  Consumers’ algorithm

Fig. 2  Companies’ algorithm



Page 6 of 30Sanchez‑Cartas ﻿Complex Adapt Syst Model  (2018) 6:2 

2.	 In the second, each company considers how that change in prices will affect the 
demands. To estimate the impact of that change in the demands, they estimate the 
change in the utilities taking other companies’ prices as given. Because all consumers 
compare the utility that each company’s product provides them, the price decisions 
of companies influence the other companies. If we assume that all companies are 
rational and fully-informed. They will perfectly forecast the decision of consumers.8 
Nonetheless, the algorithm can consider other assumptions about how companies 
make their decisions.

3.	 The third algorithm is an optional one. It is designed to control externalities such 
as direct and indirect network effects. It addresses the case in which the change in 
prices affects the decisions of other consumers that, at the same time, influences 
other consumers and so on. In some cases, when a company changes their prices, 
that decision attracts other consumers that, at the same time, attract more consum-
ers and so on. This algorithm simulates these feedback loops until this effect disap-
pears (convergent feedback loops or the attraction of all the consumers).

4.	 Companies compare the three actions: increase, decrease or maintain the prices, and 
they choose the most profitable one.

As it was stated before, the algorithm resembles the best response map, so the conver-
gence towards the price equilibria depends on the initial price and the size of the changes 
in prices (ǫ).9 Once the algorithm has reached an equilibrium, the algorithm will be con-
tinuously testing if any deviation is profitable. This algorithm can be considered as a 
helpful tool to look for local optima. To find global ones, we need to consider different ǫ
-values and different suitable starting prices.

Theoretical frameworks

To prove that the proposed algorithm is capable of reproducing theoretical models, we 
need to apply it in several frameworks. We choose five theoretical economic models. 
All of them share only one feature: companies compete in prices for consumers. This 
framework only requires knowing the utility functions, so we will not solve those mod-
els analytically. However, we provide references to those theoretical models. All the 
assumptions made in the following sections are the original assumptions of the models. 
Some of them are very restrictive, but those models are very well known in Economics, 
and it is easier to prove the algorithm in an environment that is well-known. Later, we 
will show how the algorithm is capable of dealing with those models but relaxing some 
of their assumptions.

Horizontal differentiation: the Hotelling framework

This model10 assumes there is a large pool of small consumers that are uniformly distrib-
uted in a line. At the extreme of that line, there are two companies that compete in prices 
to attract consumers. Each consumer has to move from his/her position to the 

8  This is the case in the vast majority of theoretical models that we simulate in this work.
9  This opens a discussion about how the algorithm tackles the convergence, but as long as this algorithm resembles the 
best response map of price competing markets, the convergence towards the equilibrium is similar to the one expected 
using Bertrand’s Intuition or Paradox, [Tirole and Matutes (1990), Chapter 5].
10  See [Belleflamme and Peitz (2015), Chapter 5.2].
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company’s position he/she prefers. In Economics, this heterogeneity among consumers 
is called “horizontal differentiation”. At the same level of prices, some consumers prefer 
one company but other consumers prefer the competitor. For example, at the same price, 
some consumers prefer Coke over Pepsi. In the classical version of this model, the utility 
of a consumer i buying the product of company j, j ∈ 1, 2 is

All consumers are identical with the exception that they are uniformly located (xi) 
between 0 and 1. Consumers face a transportation cost (t) for reaching companies which 
are located at the extremes of the interval (lj ∈ [0, 1]). The intuition of this parameter 
is the following: The distance between products and consumers in that interval can be 
interpreted as a “cost” because consumers have to go from their position (that represents 
their ideal product) to companies’ position (that represents the position of the real prod-
uct). Therefore, the term that controls the differentiation is t ∗ |lj − xi|.

To guarantee that all consumers buy at least one platform, the theoretical model 
assumes that all consumers have an identical (and sufficiently high) reservation value, cu . 
Lastly, we assume each company sells a product that has an exogenous quality level qj , 
and they fix a price pj.

Vertical differentiation model

In this case11, consumers’ preferences are

All consumers pay a price pj when consuming the product j, j ∈ 1, 2, which has a quality 
qj. Without loss of generality, we assume q1 > q2. The parameter θ represents the taste 
for quality. It is uniformly distributed across the population of consumers between θ ≥ 0 
and θ = θ + 1 with density 1.

We make two extra assumptions that are common in literature to guarantee enough 
differentiated consumers and a covered market respectively:

Assumption 1  θ ≥ 2θ

Assumption 2  (θ−2θ)
3

(q1 − q2) ≤ θq1

The intuition of the vertical differentiation is the following: at the same level of prices, 
all consumers prefer one company over the rest. For example, at the same price, all con-
sumers prefer a Ferrari over a Fiat.

Externalities: two‑sided markets

We consider two cases. Both of them are extensions of the previous models. In the first 
case, we consider the two-sided market proposed by Hagiu and Hałaburda (2014) in 
which two platforms compete in prices for users and developers. This model can be 

(1)Ui,j = cu + qj − t ∗ |lj − xi| − pj

11  See [Belleflamme and Peitz (2015), Chapter 5.3].

(2)Ui,j = θi ∗ qj − pj
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considered an extension of the Hotelling’s in which there are indirect network externali-
ties between two independent groups of consumers: users and developers. Following the 
original work, we assume all consumers are rational and buy one and only one platform. 
In this case, the utility of a user i consuming the platform j, j ∈ 1, 2 is given by12

Users are uniformly located in the interval [0,1], and they suffer a cost when going from 
their position to the platforms’, like in the Hotelling model. However, instead of valuing 
exogenous qualities, users (developers) value the number of developers (users) they can 
meet in the platform (n−j). We assume all users (developers) value the presence of the 
other group in the same way (δ).

The second model is proposed by Gabszewicz and Wauthy (2004), which is another 
example of two-sided markets. However, it has two interesting features: first, it presents 
vertical differentiation. This characteristic is unusual among the two-sided market lit-
erature, mainly because it generates multiple equilibria. Second, there is no information 
about the stability of the equilibria, so we have the opportunity to test the algorithm in 
an environment in which several potential equilibria are possible.

It consists of two platforms that represent exhibition centers that compete for visitors 
and exhibitors. In this case, visitors’ preferences are described by

And exhibitors’ preferences are

Parameters θ and γ are best understood as a measure of how each visitor (exhibitor) val-
ues an additional exhibitor (visitor) in the exhibition centers. The intuition underlying 
the model is the following. From an exhibitor’s point of view,13 the willingness to rent a 
stand in the exhibition center depends on his personal value of an additional visitor (γ), 
on the number of additional sales this exhibitor may expect (that depends on the num-
ber of visitors, v ej),

14 and on the rental fee, πj. At the same price, all exhibitors will prefer 
the exhibition center with more visitors.

In the original work, the authors assume that θ , γ , v ej , x
e
j ∈ [0, 1], in other words, they 

assume a normalized market.

Warranties model

This model is taken from [Belleflamme and Peitz (2015), Chapter 13]. In this model, we 
suppose that a firm offers a product that breaks down with probability 1− �, and con-
sumers are willing to pay for a product that works a quantity r > 0. The authors make 
four assumptions:

12  The case of developers is symmetric. We omit it for simplicity’s sake.

(3)Ui,j = cui − t ∗ |lj − xi| − pj + δn−j

(4)Ui,j = θx e
j − pj

(5)Ui′,j = γ v ej − πj

13  The intuition is symmetrical in the case of visitors.
14  Symmetrically, x e

j
 represents the number of expected exhibitors.
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• • There is a unit mass of homogeneous consumers
• • There are two firms. A high-quality one (�1) and a low-quality one (�2). Therefore, 
�1 > �2

• • Consumers do not know the quality of each company
• • Both companies have constant marginal costs, c.

From consumers’ point of view, a firm can be the high-quality one with probability ρ and 
the low-quality one with probability 1− ρ. Thus, the expected utility of consumers is

Up to now, the model does not consider warranties. Let’s introduce full warranties (the 
company replaces the broken product by a new one). The expected cost of introducing a 
warranty is c/�1 for the high-quality one, and c/�2 for the low-quality one. The interest-
ing point about this model is that consumers only observe prices and warranties. War-
ranties can play a decisive role in shaping prices and market shares because they provide 
information about which company could be the high-quality one. Companies can use 
warranties to “prove” users that its product is the high-quality one.15 To guarantee the 
stability of the equilibrium, the authors assume �2r < c.

Results and simulation tests
We create a world with 314 consumers (in the case of the market with two-sided plat-
forms, there are 628 consumers divided into two groups: users and developers, or visi-
tors and exhibitors) and two companies. We run one thousand simulations for each case 
in NetLogo. In all those cases, we compare the theoretical and the simulated equilibria. 
We consider two ε-values, 0.1 and 0.05. For each case, we only consider a set of parame-
ters values, for example, different transportation costs or quality levels, etc. to show how 
the algorithm is capable of reaching the theoretical equilibria. We can consider other 
cases with other parameters but, for simplicity’s sake and without loss of generality, they 
are not included (although they are available upon request).16

Horizontal differentiation: the Hotelling framework

We run the simulations considering different transportation costs and with symmetric 
quality levels (q1 = q2). As depicted in Fig. 3, depending on what ε-values we assume, we 
obtain different simulated prices that reproduce the theoretical prices properly.17

To test if simulated prices are able to reproduce the theoretical prices accurately, we run a 
linear regression in which the dependent variable is the theoretical price, and the explana-
tory variable is the simulated one. In Table 1, we observe that the r-squared is close to 99% 
in both cases. So, the simulated prices explain 99% of the variations in theoretical prices.

Let’s consider the difference between theoretical and simulated prices. We test if those 
errors are normally distributed. To do so, we consider three normality test, all of them 
assume the null hypothesis of normality.

(6)Ui = (ρ�1 + (1− ρ)�2)r − p

15  The model predicts that only the high-quality company will be willing to introduce the warranties.
16  The number of users and developers is arbitrarily selected, other numbers can be considered and conclusions will not 
change.
17  The code can be downloaded at: https://goo.gl/XSV97N.

https://goo.gl/XSV97N
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The first one is the D’Agostino’s K-squared test, or the Skewness and Kurtosis test. This 
test is based on the kurtosis and skewness measures, it can be considered a default nor-
mality test. We also consider the Shapiro–Wilk test, which is another traditional nor-
mality test. Lastly, we consider the Shapiro–Francia test, which is indicated as the best 
test to detect deviation from normality in a recent work, Mbah and Paothong (2015).

In Table  2, we observe the p-values associated with those tests. Let’s consider first 
the case in which ε = 0.1. In this case, at 95% confidence level, only in the D’Agostino’s 
K-squared test we can reject the null hypothesis of normality. It is reasonable to think 
that errors are normally distributed and therefore, the average (− 0.036) is a good repre-
sentation of the simulations errors. In this case, it is an underestimation of 3.6%. How-
ever, given that the algorithm works considering 10% of change in prices (ε = 0.1), this 
error is negligible.

On the other hand, when ε = 0.05, all the tests suggest that the difference between 
simulated and theoretical prices is not normal. We run a variance-comparison test, and 
we find that, at 99% confidence level, the standard deviations between the cases with 
transportation costs in the interval [0.1;0.59] and in the interval [0.60;0.99] have differ-
ent variances. Given that each simulation for each parameter is independent of the rest, 
we can analyze both sub-samples separately. The first one considers transportation costs 
between 0.1 and 0.59 and the other one between 0.60 and 0.99. In those intervals, at 95% 
confidence level, we cannot reject the null hypothesis of equal variance.

If we run the normality tests again, we cannot reject the null hypothesis of normal-
ity at 95% confidence level, Table  3. Therefore, the average error in simulated prices is 
an underestimation of 1.3% in the first part (− 0.013), and an overestimation of 2% in 
the second part (0.02). But given that the algorithm works considering changes of 5% in 
prices, in this case, those errors are also negligible.

Fig. 3  Simulated and theoretical prices. Hotelling’s model
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Vertical differentiation model

In this case, we run the simulations by considering different quality levels for company 2. 
Nonetheless, we maintain q1 = 1. In Fig.  4, we observe the simulated and the theoretical 

Table 1  Hotelling model

Variable Coefficient (std. err.)

(a) Hotelling, Iteration 0.1

 Simulated price 1.0459** (0.0073)

 N 90

 R2 0.9957

 F (1,89) 20,558.99

(b) Hotelling, Iteration 0.05

 Simulated price 0.9821** (0.005)

 N 90

 R2 0.9977

 F (1,89) 38,519.85

Table 2  Hotelling. Normality tests

ε/p-values Skewness and kurtosis test Shapiro–Wilk test Shapiro–Francia test

0.10 0.0205 0.09909 0.60196

0.05 0.0000 0.0000 0.001

Table 3  Hotelling model, Iteration at 0.05

Intervals Skewness and kurtosis test Shapiro–Wilk test Shapiro–Francia test

[0.1;0.59] 0.5595 0.23156 0.86565

[0.60;0.99] 0.2468 0.67779 0.68322

Fig. 4  Simulated and theoretical prices. Vertical differentiation model
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equilibrium prices considering different quality levels (company 2). As in the previous 
case, the simulated prices reproduce the theoretical ones accurately.18

We run a linear regression for each ε. The dependent variable is the theoretical price, 
and the explanatory variable is the simulated price. We find the algorithm reproduces 
the behavior of the theoretical companies properly.

In Table  4, we observe that the r-squared is close to 99% in all cases. The simulated 
prices are able to explain 99% of the variations in the theoretical prices. As in the Hotel-
ling model, simulations reproduce the optimizing behavior of companies accurately. 
Let’s consider the differences between the theoretical and simulated prices. As before, 
we consider three normality tests.

In Table  5, we observe that all the normality tests point out that, at 95% confidence 
level, we cannot reject the null hypothesis of normality. Therefore, the average of the 
errors can be interpreted as the average error of the algorithm in this model. In this case, 
the algorithm yields an average error of − 1.5% (− 0.015) when ε = 0.1 and 1% (0.01) 
when ε = 0.05. Nonetheless, the algorithm considers changes in prices of 10 and 5% 
respectively, so these errors are negligible.

In this model, demands are not equal. In contrast with the rest of the models, compa-
nies will not equally share the market. Nonetheless, the algorithm is also capable of sim-
ulating demands. In Fig.  5, we observe demands are well reproduced at the beginning, 
but there are divergences at high-quality levels. This effect depends on the ε we assume, 
and it is exclusive of vertically differentiated models.

When both qualities are similar, prices tend to be similar too but, because the algo-
rithm works in “discrete jumps (ε)”, when both qualities are similar, little increments of 
quality may not change the simulated prices but may change utilities, which leads to 

18  The code can be downloaded at: https://goo.gl/WnfPhk.

Table 4  Vertical differentiation model

Variable Coefficient (std. err.)

(a) Iteration 0.1

 Simulated price 1.0385** (0.0104)

 N 85

 R2 0.9917

 F (1,84) 10066.75

(b) Iteration 0.05

 Simulated price 1.0314 ** (0.0054)

 N 85

 R2 0.9977

 F (1,84) 36883.17

Table 5  Vertical differentiation. Normality tests

ε Skewness and kurtosis test Shapiro–Wilk test Shapiro–Francia test

0.1 0.3097 0.77471 0.94308

0.05 0.2197 0.22636 0.24974

https://goo.gl/WnfPhk


Page 13 of 30Sanchez‑Cartas ﻿Complex Adapt Syst Model  (2018) 6:2 

changes in demands. The more similar the platforms are, the more relevant are these 
changes. For that reason, those unusual behaviors are concentrated in the region where 
platforms are less differentiated. If we omit that region, we observe that the difference 
between theoretical and simulated demands (hereinafter, the errors) are normally dis-
tributed and, on average, the algorithm predicts without errors the demand level. How-
ever, we cannot omit the fact that some errors arise. To prove that those errors come 
from the ε-value assumed, we also consider the case in which ε = 0.01.

In Table 6, the � represents the difference between companies’ quality levels at which 
the errors are normal. For instance, when ε = 0.01, only if the difference in quality is 
bigger than 0.05, the errors are normal. In parenthesis, there are the p-values that cor-
respond to those cases in which we remove the observations with a differentiation less 
than �. In Table  7, we observe the case in which ε = 0.01 is the best one in reproducing 
demands because prices are more sensitive to differences in qualities.

In contrast with the previous case, the lower the ε, the more accurate are the simulated 
prices and demands in all cases. Figure 6 depicts the comparison between the cases in 
which ε = 0.05, ε = 0.1 and ε = 0.01.

Externalities: two‑sided markets

Hagiu and Halaburda’s model

This model considers that two platforms compete in prices for consumers (users and 
developers). Consumers value the presence of the other group so, the more, the better. 
For simplicity’s sake and without loss of generality, we assume both sides are 

Fig. 5  Simulated and theoretical demands. Vertical differentiation model

Table 6  Vertical differentiation. Normality tests. Demands

ε (�) Skewness and kurtosis test Shapiro–Wilk test Shapiro–Francia test

0.1(0.14) 0.0037 (0.0674) 0.00000 (0.13764) 0.00001 (0.07698)

0.05(0.09) 0.0009 (0.0396) 0.00001 (0.09888) 0.00002 (0.04154)

0.01 (0.05) 0.000 (0.6848) 0.00000 (0.69446) 0.00001 (0.55921)
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symmetrical, and we only analyze one of them, in this case, we focus on users. We run 
simulations considering different transportation costs. In Fig.   7, we observe that the 
simulated and theoretical prices behave in a similar way. As in the previous cases, the 
simulated prices reproduce the theoretical ones properly.19

If we regress the theoretical prices with the simulated ones, we find that, in all cases, 
the r-squared is superior to 99%, which shows that simulated prices predict quite well 
the theoretical prices, Table 8.

In Table   9, we analyze the differences between the simulated and the theoretical 
prices. We observe that when ε = 0.1 and at 95% confidence level, we cannot reject the 
null hypothesis of normality. On the other hand, given that the average is approximately 

19  The code can be downloaded at: https://goo.gl/RDwsDD.

Fig. 6  Comparison of ε-values. Vertical differentiation model

Table 7  Vertical differentiation models. Demands

Variable Coefficient (std. err.)

(a) Iteration 0.1

 Simulated demand 0.9556** (0.0231)

 N 85

 R2 0.9534

  F (1,84) 1717.66

(b) Iteration 0.05

 Simulated demand 0.9850** (0.0165)

 N 85

 R2 0.9771

 F (1,84) 3585.43

(c) Iteration 0.01

 Simulated demand 0.9987** (0.0067)

 N 85

 R2 0.9962

 F (1,84) 22024.81

https://goo.gl/RDwsDD
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zero, we can state that, in this case, the algorithm makes no error. However, when we 
consider ε = 0.05, we can reject the null hypothesis of normality at 99% confidence level. 
However, this rejection is a consequence of an unusual behavior at high transportation 
costs. When transportation costs are higher than 0.9, simulated prices show great differ-
ences with theoretical prices as depicted in Fig.  7.

If we omit that interval, in all normality tests, the null hypothesis cannot be rejected 
at 95% confidence level. The average is approximately equal to 0.03. So, we can state that 
when ε = 0.05, the algorithm makes an average error of 3% (3.8% if that interval is not 
omitted). As in previous cases, given that the algorithm works with percentages bigger 
than the average errors, those errors are negligible.

Fig. 7  Simulated and theoretical prices. Hagiu and Halaburda’s model

Table 8  Hagiu and Halaburda’s model

Variable Coefficient (std. err.)

(a) Two-sided, Iteration 0.1

 Simulated price 0.9924** (0.0068)

 N 90

 R2 0.9959

 F (1,88) 21,373.90

(b) Two-sided, Iteration 0.05

 Simulated price 0.9201** (0.0055)

 N 90

 R2 0.9968

 F (1,88) 27,492.02

Table 9  Hagiu and Halaburda’s model. Normality tests

ε Skewness and kurtosis test Shapiro–Wilk test Shapiro–Francia test

0.1 0.2179 0.14804 0.77307

0.05 0.0000 (0.2568) 0.0000 (0.3255) 0.0000 (0.4511)
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Gabszewicz and Wauthy’s model

In contrast with the previous model, the Gabszewicz and Wauthy’s model20 considers 
vertical differentiation between the platforms. However, this is not the only difference. 
The essential difference is that this model presents three different equilibria in the 
duopolistic framework. These equilibria are also different than the previous ones. They 
do not depend on parameters values. Each price-equilibrium is defined by constant 
prices and demands. Table 10 shows the different equilibria found by Gabszewicz and 
Wauthy. However, some of those equilibria are not stable, and the simulations are 
affected by this feature.

Let’s prove that some of those equilibria are not stable. On the one hand, the duopolis-
tic equilibrium is not stable. If any company fixes a zero price on one side and the 
monopoly price on the other side, this deviation is profitable. If any company deviates, 
the other one will abandon the market.21 If we analyze the other equilibria, only the 
“Monopoly equilibrium” is stable.22 This happens because Gabszewicz and Wauthy 
assume “passive beliefs”. That implies that when a platform changes prices on one side, 
the other side does not change their expectations immediately. So, it is always profitable 
a deviation from the zero price because, given the passive beliefs, the platforms earn an 
extra profit from deviating. And once they have moved from that equilibrium and the 
expectations have changed, they will move to the “Monopoly equilibrium” to keep their 
profits.

In this case, the theoretical equilibrium is a constant value, so we present in Table 11 
the simulation results with different ǫ-values and the theoretical equilibrium values. As 
we stated in the "Vertical differentiation model" section, the vertical differentiation can 

20  This model can be found at https://goo.gl/S6i3rn.
21  Technically, they will be indifferent, but we can only observe one reality, in this case, we assume it is the abandon.
22  This makes sense because of the vertical differentiation. The network effects are so strong that there is an incentive 
towards concentration in only one platform.

Table 10  Gabszewicz and Wauthy’s equilibria

Equilibria Prices Demands Profits

Duopolistic equilibrium p1 = π1 = 2/49

p2 = π2 = 8/49

x1 = v1 = 2/7

x2 = v2 = 4/7

�1 = 0.0233

�2 = 0.1866

Monopoly corner eq. p1 = 0,π1 = 1/2 x1 = 1, v1 = 1/2 � = 1/4

Monopoly equilibrium p1 = π1 = 1/2 x1 = v1 = 1/2 � = 1/4

Table 11  Prices, demands and profits. Simulation of Gabszewicz and Wauthy’s model

Equilibria Passive beliefs Responsive beliefs

ǫ = 0.1 P = x = � = 0 P = 0.21 x = 0.698 � = 0.293

ǫ = 0.05 P = x = � = 0 P = 0.21 x = 0.647 � = 0.291

ǫ = 0.01 P = x = � = 0 P = 0.24 x = 0.599 � = 0.287

ǫ = 0.005 P = x = � = 0 P = 0.22 x = 0.672 � = 0.296

ǫ = 0.001 P = 0.215

x = 0.685

� = 0.294

P = 0.136 x = 0.8375 � = 0.228

https://goo.gl/S6i3rn
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have dramatic effects on the equilibrium because it may lead to big changes. In the case 
of indirect network effects and vertical differentiation, those changes can be even more 
dramatic. For example, when ǫ = 0.01 or ǫ = 0.005 the model collapses to the Bertrand 
equilibrium (which is another possibility considered by the authors). This result is a con-
sequence of the extreme sensitivity of the model to changes, and the existence of several 
equilibria.

As we move towards small ǫ-values, the monopoly equilibrium becomes the predomi-
nant outcome. However, in comparison with other models, it seems that there is a big 
divergence in demands but not in prices. This characteristic is a consequence of the 
simulation model. While the theoretical model considers an infinite amount of consum-
ers uniformly distributed, our model only considers 314. That implies that one percent 
change in the γ and θ parameters represents 1% of population in the theoretical model, 
but 1.3% of population in the simulated model. This small difference leads to a huge dif-
ference between the demands of the theoretical and the simulated model because the 
vertical differentiation. Again, these results show the relevance of testing different ǫ-val-
ues. In comparison with previous models, testing different ǫ-values does not change the 
equilibrium pointed out by the simulations. But in this case, different equilibria appear 
when choosing different ǫ-values. All of them are equilibria of the theoretical model. So, 
testing different ǫ-values helps us to identify global equilibria as it was argued before.

Warranties model

In this case, the theoretical model predicts two different equilibria when there are war-
ranties and when there is no warranty. If there is no warranty, both companies fix the 
same price (p = (ρ�1 + (1− ρ)�2)r), but if warranties are used, consumers can identify 
the quality of each company and prices will be different (p1 ≤ r, p2 = �2r). However, in 
the last case, only the high-quality company remains in the market. For simplicity’s sake 
and without loss of generality, we analyze the former case.23

In Fig. 8, we depict the theoretical prices and the average simulated ones with different 
values of �1. In Fig. 9, we observe the theoretical price and two simulated prices during 
the first 50 iterations. In this model, prices are not always stable at a specific point, but 
they oscillate around that point. This oscillating pattern is due to the discrete nature of 
the algorithm, that is applied in a continuous environment that is quite sensitive to small 
changes.

To test if simulated prices are able to reproduce the theoretical prices accurately, we 
run a linear regression in which the dependent variable is the theoretical price, and the 
explanatory variable is the simulated one. In Table 1, we observe that, in both cases, the 
r-squared is around 99%, so our simulated prices are able to explain 99% of the variations 
in theoretical prices. Nonetheless, in this case, we have seven observations only, so we 
cannot test the normality of these cases properly.24 However, Figs.  8 and 9 leave little 
room for doubt that the algorithm is capable of simulating the theoretical optimal prices.

23  Nonetheless, the code and the software to simulate both cases are available at: https://goo.gl/zFvY7t.
24  We have only seven observation because we are working with the averages of simulated prices. The only test that 
we can properly run is the Wilk test and, in both cases, at 95% confidence level, we cannot reject the null hypothesis of 
normality.

https://goo.gl/zFvY7t
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However, the algorithm presents two limitations in this model. First, sometimes the 
algorithm is not capable of reaching the equilibrium and predicts a situation in which 
all companies abandon the market. This happens because of the discrete nature of the 
algorithm, small changes in the parameters correct this situation, e.g. instead of using 
�1 = 0.89, use �1 = 0.9. Second, extreme cases such as ρ = 0 or ρ = 1 will not work. This 
is a limitation of the current model because it is not programmed to consider the cases 
in which the model converges to others with full information.

Relaxation of assumptions and extensions. New directions in agent‑based modeling

Up to now, we have considered the theoretical models under their original assumptions. 
However, we can use the algorithm to address cases in which some assumptions are 
relaxed or even cases that are out of the reach of theoretical models. For instance, we 
can consider the market is not covered, utility functions are not linear, users are distrib-
uted following a normal, an exponential, or any other distribution, etc. In all of those 
cases, the algorithm works properly. We can even include new layers of complexity by 

Fig. 8  Average simulated and theoretical prices

Fig. 9  Simulated and theoretical prices
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assuming more than two companies, or by assuming that users are heterogeneous in 
several dimensions. In this section, we consider two different cases in which we relax 
such assumptions.

First, we simulate the Hagiu and Halaburda’s model presented in "Hagiu and Hal-
aburda’s model" section, but this time we test the model outside of the parameter region 
defined by the authors. What is relevant about that region is that the theoretical model 
predicts negative profits, which is not realistic because platforms will prefer to fix zero 
prices in both sides than to lose money.

Second, we simulate the Hoteling’s model presented in "Horizontal differentiation: the 
Hotelling framework" section, but this time we assume that not all the consumers enter 
the market at the same time. In fact, we assume that there is diffusion of information 
process that determines who enters the market and when.

Lastly, we briefly show how this algorithm can address other theoretical models in 
the industrial organization literature that are based on quantity competition or con-
sider a two-stage competition (dynamic frameworks). I consider those models as exten-
sions of the price competition algorithm, but not as extensions of the other theoretical 
frameworks.

Relaxed assumptions: Hagiu and Halaburda’s model

One of the assumptions of this model to guarantee that “all optimization problems with 
competing platforms are well-behaved” is t2 > δ2, Eq. 3. If we assume this condition does 
not hold, the theoretical model predicts negative profits. Obviously, this is not optimal 
because a better option is to fix zero prices or to abandon the market, which guarantees 
zero profits.

If we consider that such assumption does not hold and we run the algorithm, plat-
forms always find that prices near zero are an equilibrium.25 In Table 13, we consider 
two different starting prices for the algorithm (− 0.05 and 0.25) and two different sce-
narios.26 We find that simulated profits make more sense than their counterparts, the 
theoretical ones. The algorithm is capable of finding the best outcome in those cases in 

25  Prices equal to zero or less than the ǫ assumed.
26  In other scenarios with other starting prices, we have the same qualitative result.

Table 12  Warranties model

Variable Coefficient (std. err.)

(a) Warranties, Iteration 0.1

 Simulated price 0.9756∗∗ (0.0111)

 N 7

 R2 0.9992

 F (1,6) 7621.27

(b) Warranties, Iteration 0.05

 Simulated price 0.9304∗∗ (0.008)

 N 7

 R2 0.9996

 F (1,6) 14,831.19
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which the theoretical model provides unsatisfactory results. This result implies the algo-
rithm can be used as a verification tool for theoretical models but also, it can be used to 
deal with cases that are theoretically complex or non-tractable.

Relaxed assumptions: Hotelling’s model

This case represents a Hotelling model in which consumers are entering the market in a 
non-random way. We assume that only a small percentage of consumers can enter the 
market in the first iteration (all of them are less than one node away from one another). 
Then, those consumers can transmit the information about the product they consume to 
others neighbors in their networks in the following iterations.27 For simplicity’s sake, we 
assume that users are linked in a random network. We assume there are two companies, 
and consumers can be in one of these states: uninformed, totally informed or partly 
informed about one company. In other words, this case mixes the spread of information 
in a network with two price-competing companies trying to attract consumers.28

On the left side of Fig. 10, simulations show that prices are more volatile. This behavior 
is normal because new users are entering the market at each moment. Companies try to 
adjust prices to the expansion of the market, but companies are also competing, so they 
try to reduce prices. Prices only reach a stable position in the case with low differentia-
tion because the competition is stronger than the expansion effect (new users).

On the right side of Fig. 10, simulations show the case with low differentiation is the 
only one that reaches a point where adoption is not growing anymore (the expansion 
effect is over, almost all the potential consumers are attracted). However, the other two 
cases are so volatile because the spread of information is less regular and slower than 
before.

We can observe too that high prices are a barrier that blocks other users from becom-
ing consumers, which limits the adoption. When prices are high, some users do not con-
sume the products although they know them. This limit the spread of information which 
leads to stopping the diffusion. On the other hand, users only know about the individual 
products, so there are cases in which users are only aware of one product and, because 
information initially spreads from clusters, there will be clusters that will never know 

27  Consumers only spread the information if they consume the product. In some cases, they may have the informa-
tion but they do not spread it to their neighbors because they do not consume the product because their utility func-
tions are negative at those prices. But, if they consume, they can “infect” their neighbors with the information about 
the product they consume (14% chance).
28  We acknowledge that the whole process is not explained in a conscientious way. However, this case is further ana-
lyzed in Sanchez-Cartas and Leon (2017). We present this case only for illustrative purposes.

Table 13  Comparison between theoretical and simulated models when conditions regard‑
ing the “well behavior” of equilibria are relaxed

Variables/cases Starting price Deltas Transportation 
costs

Equilibrium prices 
users (developers)

Equilibrium profits

Simulated case 0.25 0.65 0.15 − 0.05 (0.15) 0.05

− 0.05 0.65 0.15 0.05 0.05

− 0.05 0.8 0.4 0.05 (− 0.05) 0

Theoretical case 0.65 0.15 − 0.5 − 0.5

0.8 0.4 − 0.4 − 0.4
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about the existence of other companies. In this situation, there is volatility in prices and 
adoption because there is a trade-off between rising prices (because of the differentia-
tion levels and larger profits) and reducing prices (because of the competition between 
platforms and the boosting effect that it has on the demands).

Extension 1: the perfect competition framework. Competition in quantities

Although we assume the algorithm can be applied to simulate price competition, it can 
also simulate quantity competition. To prove this point, we test a small modification of 
the algorithm. This is the simplest model of quantity competition. It assumes there is 
a large number of companies and consumers, all of them are so small with respect to 
the market that no one can influence the market. So, every participant is a price taker. 
In that sense, consumers have to choose how many products they want to buy (given a 
fixed level of rent), and companies have to choose how many products they will produce 
at given prices. For simplicity’s sake, we consider only two companies (but we can con-
sider any other number).
In this case, we consider the utility functions defined by [Belleflamme and Peitz 
(2015), Page 65]. In particular, the utility function takes the form

We consider companies can produce natural quantities of each product (1,2,3,..), and 
they sell their products at a fixed price.29 Depending on the values of b and d, we can 
address several cases considering complements or substitutes. In Table 14, we compare 
different cases. In all of them, the algorithm points out that the consumers’ decisions 
about their quantities are the optimal ones.30

For example, when d = 0 and b = 1, it is optimal for consumers to buy products 
from both companies. So, both companies will produce enough products for all the 

U(q1, q2) = 1+ aq1 + aq2 − (bq21 + 2dq1q2 + bq22)/2

29 q1 and q2 refer to the quantity produced by company 1 and 2 respectively.
30  Simply computation with the parameter values and the utility function prove this point. The model can be down-
loaded at https://goo.gl/bjDP5E.

Fig. 10  Users’ prices. Information about products

https://goo.gl/bjDP5E
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consumers. But when d = b, consumers only demand one product, and only one com-
pany will produce it.

Extension 2: Milgrom–Roberts Models of barriers to entry

The algorithm is flexible, and it can deal with dynamic frameworks. To test this state-
ment, we chose the Milgrom–Roberts model.31 The model assumes two stages: At the 
first stage, there is a monopoly that produces a good with a marginal cost that may be 
high ch or low cl. The information about the cost is not available outside of the monopoly. 
At the second stage, an entrant has the opportunity to enter the market. However, his/
her decision of entering depends on the marginal cost of the incumbent and on its own 
marginal costs ce. If the cost of the incumbent is high, the entrant will have positive prof-
its; if the cost is low, the entrant will have negative profits.

The original model considers two different equilibria: the separating one and the pool-
ing one. For simplicity’s sake and without loss of generality, we focus on the pooling 
one.32 This equilibrium predicts that the incumbent will block the market forever. Inde-
pendently of the high or low marginal costs. This happens if the Eq. 7 holds. This equa-
tion states that the duopoly profits of the entrant when the incumbent has high costs 
must be larger than zero. But they must be negative with low costs, [Tirole and Matutes 
(1990), Condition 9.8]

If this equation does not hold, for example, if the entrant has lower marginal costs than 
the incumbent with low marginal cost. The entrant will always enter the market, and two 
outcomes are possible:

• • Competition: if both have low costs and profits are non-negative.
• • Expulsion: the incumbent will be expelled from the market

In Table 15, we observe the outcome of the simulated model. The idea is to have an intui-
tion of how works the algorithm in this model. We consider two cases. One in which the 
incumbent has high marginal costs. And another one in which it has low marginal costs. 
In all those cases, the result predicted by the agent-based model is the same than the one 
predicted by theory.

31  This model is an adaptation of Milgrom and Roberts (1982) that can be found in [Tirole and Matutes (1990), Chap-
ter 9]. Code at https://goo.gl/djiCWh.
32  The Milgrom–Roberts model presents two different equilibria that are based on different assumptions. In contrast, 
the Gabszewicz and Wauthy’s model has multiple equilibria under the same assumptions.

(7)cl < ce < ch

Table 14  Consumers choices. Perfect Competition

Parameter values at a = 1 Quantities consumed Parameter values at a = 1 Quantities consumed

d = 0; b = 1 q1 = q2 = 1 d = 0.7; b = 1 q1 = 1 or q1 = 0

q2 = 0 or q2 = 1

d = b q1 = 1 or q1 = 0

q2 = 0 or q2 = 1

d = 0.7; b = 0 q1 = q2 = 1

d = − 1; b = 0 q1 = q2 = 1 d = 0.1; b = 1 q1 = q2 = 1

d = − 1; b = 1 q1 = q2 = 1 d = 0.2; b = 1 q1 = q2 = 1

https://goo.gl/djiCWh
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Discussion. Similarities and dissimilarities between the algorithm and other 
approaches
The proposed algorithm resembles the optimization programs that are used in Eco-
nomic Theory or Game Theory. In these cases, it is common to compute an optimization 
program from which the first and second order conditions are derived to identify the 
reaction functions and the equilibria. The algorithm is closely related to the idea of reac-
tion functions. However, there are relevant similarities and differences. On the one hand, 
the algorithm acts in a similar way than reaction functions; the output of both is the best 
reply to a specific situation, and the continuous interaction of reaction functions or 
agents with the algorithm leads to the Nash equilibria. If it does not exist, the algorithm 
can find corner solutions or second best equilibria.33

On the other hand, there are three relevant differences in comparison with the classi-
cal optimization programs used in Economics:

• • First, the algorithm does not provide a stylized expression that represents the equi-
libria. It computes a numerical one.

• • Second, tractability is not an issue. Traditionally, researchers assume some assump-
tions like linear demands, constant values, continuity of functions, concave profits 
functions, etc. that may not be realistic. This is done to guarantee tractability and 
well-behaved equilibria. However, that is not necessary with the algorithm. If there is 
no equilibrium, the algorithm chooses a second-best solution (one which produces 
the most favorable outcome for the agent, taking other agents’ strategies as given). In 
some cases, several second-best solutions can be found, in such cases, the algorithm 
may pivot from one to another. But, if the equilibrium is global, the algorithm will 
prove that by showing always the same outcome.

• • Third, we do not assume continuity or differentiability. The algorithm is discrete, and 
it approximates a continuous environment.

There are other features that make the algorithm interesting. For example, the algo-
rithm puts emphasis in the process of reaching the equilibrium, and not in the equilib-
rium itself. This allows us to study the impact of shocks not only in the equilibrium but 
also, in the process of reaching it. Nonetheless, the most important contribution is the 

33  For example, in a Cournot model, the equilibrium can be reached using the reaction functions only. Those func-
tions also reproduce an interactive behavior among companies that leads to the equilibrium. The algorithm works in 
a similar way.

Table 15  Milgrom–Roberts model

Parameters values 
when cincumbent = ch

Market outcome Parameters values 
when cincumbent = cl

Market outcome

cl = 0.1; ch = 0.84

ce = 0.1

Incumbent is expelled cl = 0.1; ch = 0.84

ce = 0.1

Duopoly competition

cl = 0.1; ch = 0.84

ce = 0.2

Incumbent is expelled cl = 0.3; ch = 0.84

ce = 0.1

Incumbent is expelled

cl = 0.1; ch = 0.84

ce > 0.2

Block to entry cl = 0.1; ch = 0.84

ce > 0.2

Block to entry



Page 24 of 30Sanchez‑Cartas ﻿Complex Adapt Syst Model  (2018) 6:2 

possibility of relaxing assumptions and guarantying the optimality of results at the same 
time. In this way, we can introduce new dimensions that were quite complicated in theo-
retical models, such as introducing a network structure among the consumers.

Nonetheless, some researchers may argue that the algorithm is not different than solv-
ing the model numerically. However, this is not true. To solve a model numerically 
requires solving the theoretical model analytically in advance in most of the cases,34 but 
with this algorithm, that is not necessary. The algorithm does not assume that agents 
make complicated mathematical manipulations. It consists of simple actions (consumers 
make their best decision, the one that maximizes their utility: buy one of the product or 
not; and companies increase, decrease or maintain prices, what it is more profitable at 
each time), and we prove that, with those simple actions, the theoretical equilibria pre-
dicted by many theoretical models can be reached.

I am not the first one in considering theoretical models for agent-based simulations. 
But this is the first time that an algorithm reproduces the optimizing behavior of agents 
like in theoretical economic models. So, it is possible to build agent-based models that 
are closely linked to traditional economics by using economic intuitions. I do not pre-
tend to present the agent-based modeling as an alternative to the traditional industrial 
organization literature. Instead, this work presents the agent-based modeling as a com-
plement of that literature. If we can agree that the rules presented in "The algorithm" 
section represent the same rules that we take as given (or we assume) in the consumer’s 
and company’s decision problems. Then, we can agree that the algorithm is a representa-
tion of the process of maximization of utility (profits) of users (and companies).

Nonetheless, the algorithm I propose is also criticizable. It is a tool designed to look 
for local equilibria. So, to address global equilibria, it requires different starting points, 
different number of iterations or even different discrete “jumps (ε)” in prices. If not, we 
are at risk of identifying local optima that are not the global ones.

Conclusions
We develop an algorithm for agent-based models that simulates the behavior of price-
competing companies. This algorithm considers two sub-algorithms: one for consum-
ers, and another one for companies. The consumers’ algorithm specifies that all users 
will choose that product that provides them with the highest utility. The companies’ 
algorithm specifies that each company will change its prices by a small quantity if they 
believe that such change is profitable.

We test the price-competition algorithm in several theoretical frameworks such as the 
Hotelling model, a vertical differentiation model or a two-sided market. In all of them, 
we prove the algorithm is capable of reaching the equilibria predicted by theory. We also 
prove that the algorithm works in cases that were not considered by theory, or in param-
eter regions where the theoretical model was not suitable to be analyzed. These results 
open the door to implementing endogenous pricing in agent-based models but also, to 

34  We can argue that some models cannot be solved analytically, and it is required solving them numerically. But that 
is not the point here. We argue that even such models require a previous theoretical work, in which optimization pro-
grams are defined, and some expressions are derived.
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test theoretical models in a new environment or even to teach theoretical models in a 
new way.

We conclude with a discussion of the current limitations of this research, and how this 
line of research is related to other approaches used in the Economic literature.

Additional files

Algorithm pseudo‑code

In this appendix, we provide the pseudo-code of the whole algorithm. It is divided 
into several procedures.

• • The Sub-Algorithm 1 computes the situation of the market at any moment
• • The Sub-Algorithm 2 provides a high-level vision of how the price competition is 

simulated. This sub-algorithm calls to procedure calls ”DemandPrediction“
• • The Sub-Sub-Algorithm 3 computes how each company considers that the change 

in prices will affect the market. During this procedure, three more procedures are 
called: an estimation of impact in utilities, an estimation of impact in demands, 
and the decision of platforms.

• • The Sub-Sub-Algorithm 4 and the Sub-Sub-Algorithm 5 control the estimation of 
new utilities.

• • The Sub-Algorithm 6 and the Sub-Sub-Algorithm 7 control the estimation of new 
demands.

• • The Sub-Sub-Algorithm  8 controls indirect effects that some companies may 
cause on other platforms.

• • The Sub-Sub-Algorithm 9 controls the final decision of companies with regard to 
prices.
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