
A three‑phase decision making approach 
for self‑adaptive systems using web services
Dhrgam AL‑Kafaf*†  , Dae‑Kyoo Kim† and Lunjin Lu†

Introduction
There has been a growing interest in self-adaptive software systems for their various 
use in different domains such as self-driving vehicles. The core of self-adaptive systems 
is the decision-making process which is based on a knowledge base. The knowledge 
base evolves as the system experiences more adaptations. However, the current prac-
tice mainly relies on a single-phase decision making using either the local knowledge 
base in the system (e.g., Garlan et al. 2003; Wang and Silva 2008; Dorigo and Schnepf 
1993) or an external knowledge base shared by multiple systems (e.g.,  Garlan et al. 2003; 
Cheng et al. 2005; Kramer and Magee 2007; Bonaccorsi et al. 2015; Kehoe et al. 2013). A 
local knowledge base system can make a fast adaptation decision, but precision is low 
due to the limited evolution by single learning. A shared knowledge-base system shares 

Abstract 

A self-adaptive system adapts itself to changes in a dynamic environment. The core in 
self-adaptive systems is making an adaptation decision. The current practice focuses 
on a single layer of decision making using either a local knowledge base or a shared 
knowledge base shared by multiple units through a network. While the use of a local 
knowledge base is efficient, it suffers from its limited maturity. A shared knowledge 
base can address the maturity problem, but it is inefficient in adaptation due to 
communication overheads. In this work, we present a three-phase decision making 
approach for self-adaptive systems to improve precision while being competitive 
for efficiency. The approach consists of three phases for making a decision. The first 
phase uses the local knowledge base of the self-adaptive unit to identify an object. If 
the object cannot be identified locally, the unit sends a request to shared knowledge 
bases through web services in the second and third phases. The approach makes use 
of B-kNN for object identification and web services for accessing shared knowledge 
bases. We conducted quantitative validation in terms of accuracy, precision, recall, and 
F-measure using a set of scenarios. The results show that 99.58% of accuracy, 94.01% of 
recall, 94.04% of precision, and 94.01% of F-measure can be achieved. We also con‑
ducted comparative analysis by comparing the presented approach with the tradi‑
tional approach and the cloud-based approach. The results show that the presented 
approach improves 45% in object identification with an increase of 0.66 s over the tra‑
ditional approach and the same performance in object identification with a decrease 
of 0.95 s over the cloud-based approach.

Keywords:  Adaptive systems, Unmanned ground vehicle, Machine learning, B-kNN

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8  
https://doi.org/10.1186/s40294-018-0059-1

*Correspondence:   
dalkafaf@oakland.edu 
†Dhrgam A. L. Kafaf,  
Dae-Kyoo Kim and Lunjin Lu  
contributed equally to this 
work
Computer Science 
Department, Oakland 
University, 115 Library Drive, 
Rochester, MI 48309‑4479, 
USA

http://orcid.org/0000-0003-4501-8821
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40294-018-0059-1&domain=pdf


Page 2 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

a knowledge-base with other systems through a network. The knowledge base can be 
highly mature due to the collaborative contribution to the evolution of the knowledge 
base, which enables to make a precise decision. However, a major concern is possibly 
delayed or failed adaptations due to network overheads or failure which is critical in a 
real-time environment.

In this paper, we present a three-phase decision making approach for self-adaptive 
vehicle systems to improve the precision of decisions with competitive efficiency. The 
approach makes use of B-kNN  (Kafaf et  al. 2017), a variation of k-Nearest Neighbors 
(kNN)  (Cover and Hart 1967) for improved efficiency in object identification. In the 
approach, a decision is made in three phases supported by web services. In the first 
phase, a self-adaptive unit (SAU) makes the initial decision for an encountered object 
using its local knowledge base. If the object cannot be identified, the SAU sends a 
request to a context-specific knowledge base, which is specific to an environment (e.g., 
indoor, outdoor), in the second phase via a web service. The context-specific knowledge 
base is shared and evolves by multiple SAUs within the same environment. If the object 
still cannot be identified, the system further requests to the global knowledge base in the 
third phase. The global knowledge base is shared and contributed by all vehicles across 
different environments.

We implemented the approach using Robot Operating System (ROS)  (Quigley et  al. 
2009) which is a software framework providing operating system-like functionality for 
developing robotic software. For web services, we use Representational State Trans-
fer (REST)  (Richardson and Ruby 2008) which is an architectural style for networked 
hypermedia applications. We evaluated the implementation using Gazebo (Koenig and 
Howard 2004) which provides a 3D simulation environment for robotic systems. The 
evaluation is carried out for four different scenarios with the results of each scenario 
analyzed in terms of precision and response time. The evaluation shows 96% precision 
in object identification with viable overheads introduced by the web service and 45% 
improvement in precision over the traditional approach which relies on the local knowl-
edge base only. This research is an advance of our previous work (Kafaf and Kim 2017) 
by improving precision and efficiency using B-kNN. The improvement of efficiency is 
also contributed by REST web services instead of SOAP web services used in the previ-
ous work.

The remainder of the paper is organized as follows. "Related work" section discusses 
works from the literature on self-adaptive systems. "Three-phase decision making pro-
cess" section describes this work approach. "Validation" section evaluates the approach 
using a set of scenarios in terms of quantitative and comparative analysis. "Conclu-
sion" section concludes with discussions on the future work.

Related work
The work by Magee and Kramer (1996) on dynamic modeling of software architecture 
has inspired many subsequent works (e.g., see  Garlan et  al. 2003; Cheng et  al. 2005; 
Kramer and Magee 2007; Bonaccorsi et al. 2015; Kehoe et al. 2013) on feedback loops 
which are essential for the evolution of self-adaptive systems. However, the feedback 
mechanism in these works is often kept hidden or abstract. IBM Autonomic Comput-
ing Architecture (Kephart and Chess 2003) introduced MAPE, an open architecture for 



Page 3 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

self-adaptive systems that consists of monitoring, analyzing, planning, and executing 
components.

Garlan et al. (2003) presents a set of conditions for monitoring environmental proper-
ties (e.g., network latency) for a system to dynamically adapt to environmental changes. 
A condition is defined in terms of operations and repair strategies specific to an archi-
tectural style. The conditions are specified at the architectural level for generality and 
simplicity. However, their approach is limited in learning and adapting to a situation that 
is not considered in the conditions.

Wang and Silva (2008) presents a machine-learning approach for developing a multi-
robot system where a group of intelligent robots work cooperatively to transport an 
object to a goal location in a dynamic environment. Their approach integrates reinforce-
ment learning (RL) with genetic algorithms (GAs) in order to increase the precision of 
system behaviors. However, RL and GAs are slow in adapting to a dynamic environment, 
which is an inherent limitation on their approach. Furthermore, the overhead intro-
duced by the integration offsets the precision improvement resulting from integration. 
They also present a modified Q-learning algorithm for making a decision when conflicts 
arise in resource use or behaviors.

Dorigo and Schnepf (1993) present an approach for developing behavior-based robots 
using multiple classifier systems running in parallel in a hierarchical structure. Each 
classifier system learns simple behaviors through interactions with the environment. The 
hierarchical organization distinguishes two learning activities, one for learning behavio-
ral sequences and another for learning coordination sequences. Classifier systems at the 
lowest level in the hierarchy learn behavioral sequences which are real actions activated 
by sensory input from the environment. Only the classifier systems at the lowest level 
have direct access to the environment via the sensors and actuators of the robot. On 
the other hand, classifier systems at a higher level learn to coordinate the activities of 
classifier systems at lower levels. Their work is modular, allowing more classifier compo-
nents to be added to learn more behaviors. However, that is at the expense of increased 
resource consumption.

More recently, several researchers (e.g.,  Hickman et  al. 2014; Liu et  al. 2014; Tian 
et al. 2015; Hu et al. 2012) propose to use cloud computing as a base platform for the 
knowledge base of robotic systems. The use of the cloud enables a robotic system to be 
more scalable and efficient, while allowing it to be lighter and smaller in size. This also 
improves the performance of identifying objects by the increased maturity of the knowl-
edge base shared and contributed by multiple robotic units through the cloud.

Kuffner et al. (2014) introduced the use of a cloud-based knowledge base for collect-
ing and analyzing information about an encountered object and determining robot 
behaviors in response to the object. The knowledge base receives a feedback from the 
robot on every interaction with the object. The knowledge base may benefit other robots 
facing the same experience. Unlike our work using a two-phase decision process, their 
approach solely relies on the cloud for determining robot behaviors.

Liu et al. (2014) proposed a cloud-based architecture for distributed robotic informa-
tion fusion systems to offload computation to the cloud. The architecture is based on 
ROS, consisting of one master controlling multiple robots simultaneously in the network 
where the master is loaded into a virtual machine. In their approach, a failure of the ROS 



Page 4 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

master causes the halt of the entire system, which raises a reliability concern. Unlike 
their approach, we allow a self-adaptive unit to have its own local knowledge base, which 
enables the system to continuously run even in the case where the web service is una-
vailable for any reason. Similar to Kuffner et al.’s work (Hickman et al. 2014), they also 
offload image processing into the cloud. However, relying solely on the could for image 
processing introduces significant communication overheads.

Hu et  al. (2012) proposed a cloud-based architecture for robotic systems to enable 
the extension of the computation and information sharing of robots on a network. 
The architecture leverages the combination of an ad-hoc cloud formed by machine-to-
machine (M2M) communications among participating robots and an infrastructure 
cloud enabled by machine-to-cloud (M2C) communications. However, it is not clear 
how the architecture can be validated as there are no details on implementation and 
experiments.

Chen et al. (2010) introduced the concept of “Robot as a Service (RaaS)” which is an 
all-in-one design for the service provider, service broker, and service client to support 
robot services performed remotely in different places, which reduces computation loads 
by distributing them to multiple robots in the network. However, similar to Liu et  al.’ 
work, their approach also exhibits overhead issues with respect to the response time of 
units.

Tian et al. (2015) proposed a cloud computing platform based on an intelligent space 
where a user interacts with computers and robots to use their services. In their work, the 
cloud is used to extend the knowledge of robots when a requested service is not avail-
able locally. Our work is similar to their work in that both local and external knowledge 
bases are used. However, it is not clear in their work how a robot should behave when an 
object is encountered. Also, there is little validation conducted in their work.

Bonaccorsi et  al. (2015) presented a cloud-based design for mobile robots that help 
seniors for reminding medication, monitoring remote indoor, and locating people 
indoor in case of falling. The design is based on two modules—RaaS and SaaS. RaaS is 
responsible for operating the robot and managing wireless sensor networks, while SaaS 
is responsible for locating people indoor and managing the calendar and database. The 
operations of finding people and reminding medication are outsourced to the cloud, 
which offloads the computation from the robot. However, the reliability of these opera-
tions is limited and the robot may not perform any operation in case of communication 
difficulty, which is a major concern in relying solely on the cloud.

Kehoe et  al. (2013) presented an architecture for Cloud-based robots using Google 
Goggles which is an object recognition engine. The architecture is two-fold—offline and 
online phases. The offline phase is for training when robots or humans collect objects 
images and pre-process them and upload the data to a custom version of Google Gog-
gles. In the online phase, a robot solely depends on Google Goggle online for object 
recognition. Their work has a similar problem as the work by Bonaccorsi et  al. that a 
communication failure can be critical.

In our previous work (Kafaf and Kim 2017), we presented a two-phase approach based 
on the traditional kNN algorithm for making a self-adaptive decision using SOAP for 
web services. The work in this paper improves the previous work by using a three-phase 
approach based on B-kNN (with statistical threshold detection) using REST for web 



Page 5 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

services to improve precision and efficiency. The overhead introduced by the additional 
phase is outweighed by the efficiency gained by B-kNN and REST as discussed in "Vali-
dation" section.

Three‑phase decision making process
Self-adaptive decision making has gained significant interests in various types of appli-
cations in different domains such as personal/professional service robots in the service 
robot domain, smart solder helmets in the military domain, and autonomous vehicles in 
the automotive domain. A major concern in these applications is to identify a wide range 
of objects with high precision and efficiency.

In this section, we describe the three-phase decision making process for self-adaptive 
systems. The approach aims to improve the object identification in a self-adaptive sys-
tem with competitive efficiency. The application of the technique includes personal/pro-
fessional service robots in the service robot domain, smart solder helmets in the military 
domain, and autonomous vehicles in the automotive domain. The process consists of 
three phases. In the first phase, the SAU makes the initial decision to identify an encoun-
tered object using its local knowledge base (LKB). If the object cannot be identified, the 
SAU sends a request to a context-specific knowledge (CKB) base through a web service 
in the second phase. The CKB is shared and evolves by multiple SAUs in the same envi-
ronment (e.g., indoor). As the CKB is contributed by multiple SAUs, it is more mature 
than local knowledge bases. There are multiple CKBs for different contexts and the SAU 
determines which one to use based on its assessment of the given image. If the object 
still cannot be identified by the CKB, the CKB delegates the request to the global knowl-
edge base (GKB) which is an aggregate of CKBs. The GKB assesses the received image 
to determine the context. If the context is different from the one of which the requesting 
CKB is concerned, the GKB forwards the request to the CKB of the determined context. 
If the second CKB cannot identify the object either, the CKB send the request back to 
the GKB and the GKB searches for the object within its dataset. If the object cannot be 
identified by the GKB, the GBK creates a new class for the object. Figure 1 depicts the 
three-phase decision making process where CKBs and the GKB reside in the web.

In the remaining section, we describe B-kNN for identifying objects and the architec-
tural components in the three-phase decision making process.

B‑kNN

In this work, we use B-kNN  (Kafaf et  al. 2017) which is a variation of kNN  (Cover 
and Hart 1967) for improved efficiency in object identification. While the traditional 
kNN is exhaustive in searching, B-kNN is selective, which reduces searching time. 
Exhaustive search is more precise, but less efficient, which can be critical when data-
sets are enormous. B-kNN is designed to be efficient with competitive precision. 
B-kNN preprocesses the training dataset to reduce computational time by selecting 
a set of representative points from the training dataset. The set is defined based on 
the minimum and maximum points (MMP) for each class in the training dataset in 
order to form a boundary of the class. The MMP are determined by the minimum and 
maximum value of each dimension (attribute) of the class. The set of points that fall 
on the boundary of a class referred to as boundary set (BS) represents the class and 



Page 6 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

the set of the BSs of the training datasets represents the training dataset. Overlapping 
boundaries may result in less accurate classification when the test element exists in 
the overlap. This is addressed by adjusting the MMP (e.g., decreasing the minimum 
point, increasing the maximum point). Algorithm 1 shows the algorithm of B-kNN. 
In the algorithm, the test element is examined to the MMP of classes. If it is found 
in any MMP, the element has been identified. If not, the element is examined to the 
BS of classes using kNN to determine the nearest class which becomes the class of 
the element. We adopt Grubbs’ test (Grubbs 1969) to set thresholds to determine the 
class membership of the test element. A threshold is set for each class to reflect the 
relative distribution of the elements in the class. If the distance of the test element 
to a class is smaller than the threshold of the class, the test element is determined to 
belong to the class. 

B−kNNKnown
Object?Plan

RetrieveSend Plan Delegate
Request CKB n

Request
Alternative? Environment

Assess Same Type?

B−kNN
Known
Object? Create Object Create Plan

Plan
Retrieve

Delegate
Request

Environment
Assess Detect

Object
Known
Object? Executor

SAU

SAU

Yes
Send Request

NoAnalyzer (LKB)

CKB 1

No

NoYes
Alternative?

Request Yes

delegate to a different CKBNo

Yes

Yes

No

No

Yes

GKB

CL

CKB

GKB

Communication Layer (Web Service)

Fig. 1  Three-phase decision making



Page 7 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

Architectural components

The three-phase decision making process involves two major components—SAU and 
web service where SAU is concerned with making the initial decision using its LKB and 
the web service is concerned with making the second and third decisions using a CBK 
and the GBK, respectively.

Self‑adaptive unit (SAU)

An SAU represents a single self-adaptive unit. It moves around in the given environment 
and adapts itself to an encountered challenge (e.g., obeying traffic signs). Figure 2 shows 
the model of a SAU based on the IBM model (Kephart and Chess 2003). It consists of 
a monitor, an analyzer, a local planner, and an executor. The monitor receives as input 
images from the camera mounted on the SAU and the speed of the SAU from the actua-
tors of the wheels. The inputs are sent to the analyzer to determine instructions to be 
executed. The instructions are converted to an action by the local planner and executed 
by the executor.

This research uses the Kinematic model (Haug 1989) to control the state change of a 
SAU and calculate the direction and speed of the SAU. The dynamics model  (Bleicher 
et al. 1999) is another model that can be used for the same purpose, but requires more 
parameters (e.g., material properties, the inertia of wheels) which are not concerned in 
this work. Figure  3 shows the Kinematics model for a two-wheeled differential-drive 
vehicle that has an independent actuator on each wheel. In the model, the circle repre-
sents the robot, the two boxes on the left and right represent the wheels, and the arrows 
denote the rotation direction. The letter W specifies the width of the robot, V speci-
fies the velocity of the vehicle, Vtl and Vtr denote the velocity of the left and right wheel 
respectively, and ψ specifies the rotation degree.

Monitor  The monitor receives images from the camera on the SAU and the RPM of 
wheels from the actuators on the wheels. Images are used to identify the surroundings of 
the SAU and RPMs are used to determine the current speed of the SAU. The orientation 
of the SAU is determined by the Kinematic model. Given the information, the monitor 
calculates the distance of the SAU from an encountered object. The collected and com-
puted information is stored and sent to the analyzer to determine an appropriate reaction 
to the object. Algorithm 2 describes the monitoring operation. The operation receives 

feedback
CKB GKB

Local

Executer Analyzer

Planner

Monitor
SAU

request request

feedback

Fig. 2  Self-adaptive feedback loop



Page 8 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

camera images, vehicle speed, and LiDAR streams and calculates the distance between 
the SAU to the encountered object. 

Analyzer  Based on the data received from the monitor, the analyzer identifies the envi-
ronmental objects surrounding the SAU using the LiDAR on the SAU to avoid collision. 
Algorithm 3 describes the Analyzer operation. It first identifies the type of the environ-
ment to narrow down object types that might be encountered. We consider three types of 
environments—indoor, urban, and rural. For example, if the environment is identified as 
outdoor, typical outdoor objects such as traffic signs are expected and considered first in 
the identification process. This helps improve efficiency by reducing the problem space, 
which is specially helpful SAUs whose computing resources are limited. 

ψ

V

W

Vtl Vtr

Fig. 3  Differential-drive vehicle kinematics (Haug 1989)



Page 9 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

After determining the environment type, the analyzer identifies the detected object 
using the LKB. If the object is successfully identified, it is sent to the local planner to 
determine an adaptive behavior based on the action plans that are locally available in 
the SAU. If the object cannot be identified by the LKB, the SAU sends an identification 
request to the CKB that is specific to the environment type through a web service. If a 
plan is not received until the SAU reaches 0.25 m from the object, the adaptation fails 
and the SAU makes a 180° turn to avoid the collision. If the received plan is found to 
be unsuitable and there is sufficient time to make another request before reaching the 
turning point, the SAU sends a feedback to the CKB and requests an alternative plan. 
The CKB delegates the feedback and request to the GKB. The GKB then selects an alter-
native plan and sends it back to the CKB. The CKB updates its own dataset with the 
received plan and delegates the plan to the requesting SAU. If the alternative plan is not 
suitable either with no sufficient time to make another request, the adaption fails and the 
SAU makes a 180° turn.

Local planner  The local planner controls the speed of the SAU to support the object 
identification process in the analyzer. Algorithm 4 describe the planning operation. While 
the analyzer identifies an object, the local planner slows down as it approaches the object, 
allowing time for the analyzer to communicate with the CKB. This also helps to prevent a 
possible collision caused by a radical change of speed. The adaptation plans vary depend-
ing on the type of the encountered object. For example, the SAU makes a complete stop 
for three seconds if the object is a stop sign, or the SAU avoid collision with pedestrians. 
This research also defines three types of distances—near, fuzzy, and far to mandate a dif-
ferent reaction in speed depending on the distance of the SAU to the encountered object. 
In any of these cases, the SAU tries to make an adaptation decision until reaching the 
minimum distance to the object to avoid a collision. Objects that are small enough to pass 
under the vehicle’s wheels are not considered in this work. 

Executor  The executor performs the adaptive operation (e.g., turn left, turn right) 
that is determined by the local planner. It converts the operation into an actual action 
to be carried on the SAU’s wheels through the Kinematic model. It first determines if 
the operation requires the SAU to turn. If so, it calculates the degree of the turn based 
on the current direction of the SAU and the distance to the object. The individual 



Page 10 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

wheels of the SAU run on differential drive which allows them to have different speeds 
to make a turn. The turning speed of a wheel is computed based on the angle of the 
turn and sent to the actuator of the wheel. The SAU is designed to make a 180° turn 
when reaching 0.25 m to the object in order to avoid a collision. Algorithm 5 describes 
the execution operation. 

Web services

For those objects that cannot be identified by the LKB of the SAU, the SAU sends a 
request through a web service to the CKB that is specialized for the identified envi-
ronment type. If the CKB is also unable to identify the object, it further delegates the 
request to the GKB. Note that CKBs and the GKB reside in the same server. We use 
a web service for the communication between the LKB and the CKB. web service, 
which is a standard protocol, is chosen for its easiness of implementation and low 
cost of communication.

Context‑specific knowledge base

When a request is received, CKB determines whether the object has been previously 
identified by other SAUs sharing and contributing to the CKB. CKBs are also based 
on B-kNN and the identification process is the same as LKBs. If the object is already 
known to the CKB, it retrieves the existing adaptation plan associated with the object 
from the data storage and sends it to the SAU. If the object cannot be identified, the 
CKB delegates the request to the GKB for more comprehensive search. Algorithm 6 
describes the CKB Operation. Note that CKBs evolve by updating their dataset with 
responses received from the GKB for unknown objects. 

Global knowledge base

When receiving the request, the GKB reassesses the environment type of the object 
with a more mature dataset. If the GKB determines that the object belongs to a differ-
ent environment from that of the requesting CKB, the GKB delegates the request to the 



Page 11 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

corresponding CKB. If the CKB cannot identify the object either, it returns the request 
to the GKB. The GKB then checks whether the object has been previously identified in 
its dataset. If not, it determines the class membership for the object using B-kNN and 
sends the adaptation plan associated with the class to the requesting CKB which for-
wards the response to the requesting SAU. If the GKB determines the environment type 
to be the same as the type of the requesting CKB and the object is known to the GKB, 
the GKB sends the class membership and its associated adaptation plan to the request-
ing CKB.

If the object is unknown to the GBK, the GKB defines a new type for the object using the 
k-means clustering based on their similarities. The new type is defined in terms of name and 
adaptation plan. The name should be unique from existing types to avoid name conflicts. An 
adaptation plan is determined for the new type by k-means and B-kNN. k-means first deter-
mines the k nearest type for the object. The k-nearest type is inserted into B-kNN to retrieve 
its associated adaptation plan. The plan is then set as the plan for the new type. If the plan fails 
on the SAU, the SAU sends a feedback to the CKB which delegates the request to the GKB for 
an alternative plan. This process continues until the SAU reaches the turning point to avoid 
a collision. If no plan succeeds within the viable time, the SAU sends a failure feedback to 
the CKB which delegates the feedback to the GKB. The CKB and GKB then de-associate the 
failed plan from the object type in their dataset. Algorithm 7 describes the GKB operation. 

The SAU may continue to request an alternative plan while there is enough time 
left before colliding with the object. Figure  4 illustrates the time line for feedbacks. If 
received adaptations continue to fail and there is insufficient time remaining to receive 
another plan, the SAU stops moving and makes a 180° turn.

SAU Object

t1 t2 t3 t4

feedback nfeedback 1

Time before Collision

Remaining
Time before
Collision

Fig. 4  Feedback



Page 12 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

Validation
We validated the approach using Gazebo (Koenig and Howard 2004) which is a robot 
simulation framework for design and testing of robotic systems in various settings 
of scenarios. We use Gazebo as an outdoor simulator which we found is suitable for 
this work. However, by the nature of simulators, it comes with limitations in physical 
aspects such as simulating extreme weather conditions or sun light reflection on road 
lane marking (Koenig and Howard 2004) which are not considered in this work.

We implemented SAUs on Robot Operating System (ROS)  (Quigley et  al. 2009) 
which is an open source framework for development of robot software. ROS was cho-
sen for its portability in various operating systems and ample documentations. SAUs 
are populated in a simulation environment created by Gazebo. Each SAU is equipped 
with a camera and LiDAR. A SAU uses a VGA camera that has 640 × 480 resolution 
with the shutter speed of 20 frames/s as the main input sensor for monitoring the 
surroundings. The resolution is high enough to recognize an object boundary, while 
requiring less computation resources for image processing. We also used LiDARs for 
detecting surrounding objects and measuring the distance of the SAU to an object. 
LiDARs allow for more accurate measuring of object distance than cameras, while 
consuming less computing resources. LiDARs are supported by the move_base ROS 
package in Gazebo which provides a route plan to reach a given destination. Gazebo 
was run on a 64-bit operating system with Intel Core i7 CPU (2.4 GHz) and 8 GB 
RAM. We also used Open Source Computer Vision Library (OpenCV) (Bradski and 
Kaehler 2008) for image processing. For web services, we used REST for efficient 
communication.

Figure 5 shows a screen capture of the validation environment in Gazebo. In the fig-
ure, the left window is used to configure the environment through the World tab which 
lists the objects (e.g., tables, cones) populated in the environment and the Insert tab for 
managing objects (e.g., adding, removing). The right window displays the running envi-
ronment where a SAU is represented as a cylinder shape (in the center) with two wheels 
each having its own actuator enabling differential drive. SAUs run autonomously in the 
environment using LiDAR streams to detect and avoid surrounding objects.

We created six independent running environments containing a combination 
of indoor, urban, and rural scenes. Each environment contains one SAU and 35 
object types of which 15 object types are already known to the SAU and the rest are 
unknown. Object types vary in each environment. The six SAUs are labeled SAU1 
to SAU6. Table 1 shows the object types that are known to SAU1 and the number of 
object instances considered in the environment. Other environments and SAUs are 
similar. We initially trained the system by running the six SAUs for 30 h to collect suf-
ficient data for validation. After training, the experiment was run for 60 hours.

We used RVIZ, a 3-D visualizer for displaying data captured by sensors. Fig-
ure 6 shows the camera view displayed by RVIZ. Images furnished by RVIZ contain 
no noise (e.g., distortion, blurring), which enables B-kNN to make precise deci-
sions. We used only images as input to B-kNN and Gazebo guarantees no failure 
of feeding images. Thus, there are no missing values for B-kNN attributes. We use 
k=1 for B-kNN to determine the first nearest neighbors for the target object. The 



Page 13 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

environmental characteristics (e.g., trees, walls) captured in an image are used to 
determine the type of the environment (e.g., indoor, urban, rural).

To demonstrate how a SAU avoids an object, Fig.  7 shows the SAU approaching 
a pedestrian, Fig.  8 shows the SAU changing the direction to the right as there is 
another pedestrian on the left, and Figs. 9, 10 illustrates the SAU successfully avoid-
ing the pedestrians.

Fig. 5  Validation environment in Gazebo

Table 1  Object types known to SAU1

Num. Object types Num. 
of instances

1 Cube 100

2 Car 100

3 Cone 100

4 Bus 100

5 Train 100

6 TV 100

7 Dumpster 100

8 Gas pump 100

9 Table 100

10 Sofa 100

11 Chair 100

12 Fridge 100

13 Printer 100

14 Vending machine 100

15 Lockers 100

Average 100



Page 14 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

Scenarios

We considered five scenarios for validation.

S1	Identifying an object known to LKB.
S2	Identifying an object unknown to LKB, but known to CKB. When an object is 

encountered, the SAU first identifies the type of the current environment (e.g., 
urban, rural). For an unknown object, the SAU sends via a web service an identifica-
tion request to the CKB that is specialized for the environment type.

S3	Identifying an object unknown to LKB and CKB, but known to GKB. For an object 
unknown to the LKB and CKB, the CKB sends an identification request to the GKB. 
The GKB identifies the object and sends the existing adaptation plan back to the 

Fig. 6  RVIZ camera capture

Fig. 7  Gazebo SAU approaching pedestrians



Page 15 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

Fig. 8  Gazebo SAU changing direction

Fig. 9  Gazebo SAU successfully avoiding the pedestrians

Fig. 10  Gazebo SAU successfully avoided the pedestrians



Page 16 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

CKB. The CKB updates its own dataset with the received plan and delegates the 
response to the requesting SAU.

S4	Identifying an object unknown to LKB, CKB, and GKB. The GKB creates a new type 
for the object and associates an adaptation plan to the object type.

S5	Failure of the adaptation plan provided by GKB. The SAU requests an alternative 
plan to the CKB which delegates the request to the GKB. The GKB builds an alterna-
tive plan and sends it back to the CKB. The CKB updates its own dataset with the 
alternative plan and delegates it to the SAU.

Scenario 1: Identifying objects known to LKB

This scenario evaluates the case where an SAU encounters an object that is known to its 
LKB. When the object is encountered, the SAU first determines the type of the current 
environment and tries to identify the object among the objects that have been previously 
identified in the respective environment. For a known object, the LKB already has an 
established adaptation plan. The plan is retrieved by the analyzer of the SAU and exe-
cuted in consideration of the current speed and direction of the SAU.

Table 2 shows the number of objects encountered, recognized, and unrecognized by 
the LKB of the six SAUs in their respective environments without using CKBs or the 
GKB. The table shows that SAU1 had encountered 6452 objects, of which 3291 objects 
(51%) were recognized and 3161 objects (49%) were not recognized by the LKB. The 
average recognition rate of the six SAUs is 52% which reveals a significant limitation of 
complete reliance on LKBs. The table also shows the average response time to recognize 
objects for each SAU is measured as 0.12 s which is sufficiently shorter than the average 
collision time of 5 s (based on the average distance of 15 m to detect an object with the 
maximum speed of 3 m/s). This ensures that a response is received before collision.

Scenario 2: Identifying objects unknown to LKB, but known to CKB

This scenario evaluates identifying an object that is unknown to the LKB, but known to 
the CKB. For an object unknown to the LKB, the SAU sends an identification request 
via a web service to the CKB that is specialized for the type of the current environment 
where the object is encountered. If the CKB recognizes the object, it retrieves the exist-
ing adaptation plan and sends it back to the SAU. In the experiment, CKBs are initially 
furnished with 150 known objects. Table 3 shows the results of Scenario 2. It shows that 

Table 2  The results of Scenarios 1

Num. of encountered 
objects

Num. of recognized 
objects

Num. of unrecognized 
objects

Average 
response 
time (s)

SAU1 6452 3291 (51%) 3161 (49%) 0.10

SAU2 6587 3425 (52%) 3162 (48%) 0.12

SAU3 6210 3229 (52%) 2981 (48%) 0.13

SAU4 5958 3098 (52%) 2860 (48%) 0.12

SAU5 6741 3573 (53%) 3168 (47%) 0.14

SAU6 6367 3311 (52%) 3056 (48%) 0.13

Average 6386 3321 (52%) 3065 (48%) 0.12



Page 17 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

on average, 72% of encountered objects are recognized and 28% are unrecognized, which 
demonstrates 20% improvement over the results of Scenario 1 in Table 2. The average 
response time is measured as 0.22 s which is sufficiently shorter than the average colli-
sion time.

Scenario 3: Identifying objects unknown to LKB and CKB, but known to GKB

This scenario evaluates identifying an object that is unknown to the LKB and CKB, 
but known to the GKB. For an object that is unknown to the CKB, the CKB sends 
an identification request to the GKB. The GKB then re-evaluates the environment 
of the object. If it is evaluated as the same type as the one that was initially evalu-
ated by the SAU, the GKB starts to identify the object. For a known object, the GKB 
sends the existing adaptation plan back to the CKB and the CKB delegates the plan 
to the SAU. If the environment type is determined to be different from the one that 
was initially assessed by the SAU, the GKB delegates the request to the CKB that is 
specialized for the reassessed environment type. If the object is recognized by the 
CKB, the CKB responds to the SAU with the existing adaptation plan. If not, the 
CKB returns the request to the GKB. In the experiment, the GKB is initially fur-
nished with 180 known objects out of 210 objects in the entire system.

Table  4 shows the results of Scenario 3. On average, 86% of encountered objects 
are recognized and 14% are unrecognized, which demonstrates 14% improvement 
over the results of Scenario 2 in Table 3. The average response time is measured as 
0.39 s which remains sufficiently shorter than the average collision time.

Table 3  The results of Scenario 2

Num. of encountered 
objects

Num. of recognized 
objects

Num. of unrecognized 
objects

Average 
response 
time (s)

SAU1 6452 4516 (70%) 1936 (30%) 0.21

SAU2 6587 4743 (72%) 1844 (28%) 0.24

SAU3 6210 4471 (72%) 1739 (28%) 0.21

SAU4 5958 4349 (73%) 1609 (27%) 0.22

SAU5 6741 4921 (73%) 1820 (27%) 0.22

SAU6 6367 4584 (72%) 1783 (28%) 0.23

Average 6386 4597 (72%) 1788 (28%) 0.22

Table 4  The results of Scenario 3

Num. of encountered 
objects

Num. of recognized 
objects

Num. of unrecognized 
objects

Average 
response 
time (s)

SAU1 6452 5613 (87%) 839 (13%) 0.38

SAU2 6587 5599 (85%) 988 (15%) 0.41

SAU3 6210 5465 (88%) 745 (12%) 0.39

SAU4 5958 5303 (89%) 655 (11%) 0.39

SAU5 6741 5797 (86%) 944 (14%) 0.40

SAU6 6367 5412 (85%) 955 (15%) 0.38

Average 6386 5531 (86%) 854 (14%) 0.39



Page 18 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

For an object known to the GKB, the GKB does not assess the environment type 
and tries to identify the object by itself without referring to another CKB. Table  5 
show the results. The number of the recognized and unrecognized objects is simi-
lar to that in Scenario 3. However, the average response time is measured as 0.42 s 
which is slightly higher than that (0.39) of Scenario 3. This is because the GKB has to 
deal with a lager problem space.

Scenario 4: Identifying objects unknown to LKB, CKB, and GKB

This scenario evaluates the case in which the encountered object is unknown to the LKB, 
CKB and GKB. For such an object, the GKB creates a new object type using k-means 
clustering and establishes an adaptation plan for the new type using B-kNN. The GKB 
then sends the adaptation plan to the CKB and the CKB delegates the response to the 
SAU after updating its own dataset with the adaptation plan. Table 6 shows the number 
of object types created by the GKB for unrecognized objects. The table shows that SAU1 
encountered 839 unrecognized objects, which results in four new object types created 
by the GKB. Using the new types, 428 objects (51%) of 839 unrecognized objects were 
recognized. The average response time including the creation time is measured as 0.86 s. 
Data on other SAUs can be interpreted similarly. On average, five new object types were 
created which enables identifying 444 objects (53%) of 854 unrecognized objects. The 
average response time is measured as 0.87 s which is sufficiently shorter than the average 
collision time.

Table 5  The results of alternative Scenario 3

Num. of encountered 
objects

Num. of recognized 
objects

Num. of unrecognized 
objects

Average 
response 
time (s)

SAU1 6452 5600 (87%) 852 (13%) 0.40

SAU2 6587 5619 (85%) 968 (15%) 0.42

SAU3 6210 5372 (87%) 838 (13%) 0.41

SAU4 5958 5035 (85%) 923 (15%) 0.42

SAU5 6741 5871 (87%) 870 (13%) 0.43

SAU6 6367 5380 (84%) 987 (16%) 0.42

Average 6386 5479 (86%) 906 (14%) 0.42

Table 6  Object type creation for unrecognized objects

Num. of unrecognized 
objects

Num. of object types 
created

Num. of recognized 
objects

Average 
response 
time (s)

SAU1 839 4 428 (51%) 0.86

SAU2 988 3 524 (53%) 0.87

SAU3 745 5 380 (51%) 0.86

SAU4 655 7 334 (51%) 0.87

SAU5 944 5 491 (52%) 0.88

SAU6 955 4 506 (53%) 0.89

Average 854 5 444 (53%) 0.87



Page 19 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

Table 7 shows the results of Scenario 4. The results show that SAU1 encountered 6452 
encountered objects of which 6258 objects (97%) were identified and 194 objects (3%) 
were not recognized. This demonstrates 10% improvement over the results of Scenario 3 
in Table 4. An object is marked as unidentified when the time before collision is reached 
before a viable adaptation plan is established. The average response time for recognizing 
an object in Scenario 4 is measured as 0.79 s. Note that this is shorter than the time in Sce-
nario 3 (see Table 4). This is because the average response time (0.12 s) of LKB is shorter 
than the average response time (0.39 s) of GKB. Data on other SAUs can be interpreted 
similarly. On average, of 6386 encountered objects, 6135 objects (96%) were successfully 
recognized and 250 objects (4%) were not recognized. The average of average response 
times is measured as 0.79 s which is sufficiently shorter than the average collision time.

Scenario 5: Sending Feedback to GKB

If the adaptation plan received from the GKB fails (e.g., causing a near collision), the 
SAU requests an alternative plan to the GKB. Such a request is referred to as feedback. 
Upon receiving a feedback, the GKB searches for a k near object using B-kNN and sends 
the adaptation plan associated with the object as an alternative plan. If no object is found 
at the k distance, the GKB searches for another object in the next k+1 distance. This 
continues until either the plan is successful or the minimum time before collision has 
reached, whichever comes first. Table 8 shows the results of Scenario 5. The tables show 
that SAU1 had encountered 6452 objects of which 710 needed feedbacks to be identi-
fied and 1859 feedbacks were sent to the GKB. There were 7602 attempts for identifying 

Table 7  The results of Scenario 4

Num. of encountered 
objects

Num. of recognized 
objects

Num. of unrecognized 
objects

Average 
response 
time (s)

SAU1 6452 6258 (97%) 194 (3%) 0.78

SAU2 6587 6284 (95%) 303 (5%) 0.81

SAU3 6210 5900 (95%) 311 (5%) 0.79

SAU4 5958 5720 (96%) 238 (4%) 0.77

SAU5 6741 6539 (97%) 202 (3%) 0.80

SAU6 6367 6112 (96%) 255 (4%) 0.79

Average 6386 6135 (96%) 250 (4%) 0.79

Table 8  The results of Scenario 5

Num. 
of encountered 
objects

Num. of objects 
needed 
feedback

Num. 
of attempts

Num. 
of feedback

Num. of successfully 
executed feedbacks

Avg. resp. 
time (s)

SAU1 6452 710 7602 1859 516 0.98

SAU2 6587 788 7698 1899 485 0.91

SAU3 6210 487 6945 1222 176 0.98

SAU4 5958 471 6590 1103 233 0.99

SAU5 6741 816 7997 2072 613 0.90

SAU6 6367 798 7469 1900 544 0.97

Average 6386 678 7383 1676 428 0.95



Page 20 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

objects of which 516 were successfully executed. Data on other SAUs can be interpreted 
similarly. The average response time for both successful adaptations and feedbacks is 
0.95 s which is sufficiently shorter than the average collision time. The average number 
of feedbacks per object is 2.84 (1396/492).

Figure 11 shows the average number of recognized objects for Scenario 1–4. The fig-
ure shows that the number of average recognized objects is increased from 3321 (52%) 
in Scenario 1 up to 6135 (96%) in Scenario 4.

Quantitative analysis

We analyze the approach in terms of accuracy, precision, and recall using the confusion 
matrix (Fawcett 2006). Table 9 shows a partial confusion matrix for the performance of 
SAU1 without using CKBs or the GKB. Columns represent the object types identified 
by B-kNN and rows represent actual object types. For instance, for the TV type, two 
objects were identified as cube by B-kNN, but they were actually TVs.

Based on the confusion matrix, we measure the accuracy, precision, and recall of the 
approach. We first measured true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN) as shown in Table 10. For the cube type, (1) TP is measured as 
100 which represents the number of objects that were correctly identified as cube by 

0

1000

2000

3000

4000

5000

6000

7000

SAU 1 SAU 2 SAU 3 SAU 4 SAU 5 SAU 6

stcejb
O

Fig. 11  Comparing results of Scenario 1–4

Table 9  Confusion matrix for SAU1

Object types identified by B-kNN

Cube Car Cone Bus Train TV Dumpster Gas pump Table Sofa

Actual object types

 Cube 100 0 0 0 0 3 0 0 3 0

 Car 0 100 0 4 5 0 0 0 0 0

 Cone 2 0 100 0 0 0 0 0 0 0

 Bus 0 3 0 98 6 0 0 0 0 0

 Train 0 1 0 4 96 0 3 0 0 0

 TV 2 0 0 0 0 100 0 0 0 0

 Dumpster 0 0 0 0 0 0 99 0 0 0

 Gas Pump 0 0 2 0 0 0 0 100 0 0

 Table 2 0 0 0 0 0 0 0 99 0

 Sofa 0 0 0 0 0 0 0 0 0 100



Page 21 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

B-kNN, (2) FP is measured as 11 which represents the number of objects that were 
incorrectly identified as cube by B-kNN, but they are actually non-cube objects, (3) TN 
is measured as 2930 which represents the number of objects that were correctly identi-
fied as non-cube by B-kNN, and (4) FN is measured as 9 which represents the number 
of objects that were incorrectly identified as non-cube by B-kNN, but are actually cubes. 
Other data in the table can be interpreted similarly.

Based on the values in Table  10, the accuracy, precision, recall, and F1 score of the 
approach are calculated using the following formulas.

Table 11 shows that the average of accuracy, recall, precision, recall, and F1 are meas-
ured as 99.58%, 94.01%, 94.04%, and 94.01% respectively.

We also compare this work with our previous work which uses the traditional kNN in 
terms of object recognition and response time. Table 12 shows the results. The results 
demonstrate 43% improvement in response time while having the same accuracy in 
object recognition, which justifies the adoption of B-kNN in this work.

(1)Accuracy =
TP + TN

TP + FP + FN + TN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 = 2 ∗
Precision ∗ Recall

Precision+ Recall

Table 10  TP, FP, TN, and FN

Object types TP FP TN FN

Cube 100 11 2930 9

Car 100 4 2937 9

Cone 100 2 2946 2

Bus 98 8 2937 9

Train 96 11 2939 8

TV 100 5 2941 4

Dumpster 99 3 2947 2

Gas pump 100 4 2944 2

Table 99 4 2946 2

Sofa 100 4 2938 8

Chair 89 8 2956 8

Fridge 99 9 2936 7

Printer 100 5 2941 4

Vending machine 100 8 2931 11

Lockers 100 9 2931 10



Page 22 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

Comparative analysis

We also compared the presented approach with the traditional approach relying on 
LKBs only and the cloud-based approach relying on CKBs and the GKB only. We simu-
lated the traditional approach by running six independent SAUs simultaneously, without 
using CKBs and the GKB. To simulate the cloud-based approach, we configured the sys-
tem to run six SAUs using only CKBs and the GKB. In all the three approaches, SAUs 
were run for the same duration of 100 h. Table 13 shows the results of the comparison. 
The results show that in the presented approach, 38315 objects were encountered, of 
which 36813 (96%) were identified, leaving only 1502 (4%) unidentified with the average 
response time of 0.79 s. The traditional approach encountered 37854 objects of which 
19315 (51%) were identified with the average response time of 0.13 s. This demonstrates 
45% improvement in object identification with an increase of 0.66 s loss in the average 

Table 11  Accuracy, precision, and recall

Object types Accuracy (%) Recall (%) Precision (%) F1 score (%)

Cube 99.34 90.09 91.74 90.91

Car 99.57 96.15 91.74 93.90

Cone 99.87 98.04 98.04 98.04

Bus 99.44 92.45 91.59 92.02

Train 99.38 89.72 92.31 91.00

TV 99.70 95.24 96.15 95.69

Dumpster 99.84 97.06 98.02 97.54

Gas pump 99.80 96.15 98.04 97.09

Table 99.80 96.12 98.02 97.06

Sofa 99.61 96.15 92.59 94.34

Chair 99.48 91.75 91.75 91.75

Fridge 99.48 91.67 93.40 92.52

Printer 99.70 95.24 96.15 95.69

Vending machine 99.38 92.59 90.09 91.32

Lockers 99.38 91.74 90.91 91.32

Average 99.58 94.01 94.04 94.01

Table 12  Improvement in response time

% of recognized 
objects

Num. of encountered 
objects

Num. of recognized 
objects

Response 
time (s)

Presented approach 96 38315 36813 0.79

Previous approach 96 14963 14435 1.56

Table 13  Approach validation

Num. 
of SAUs

Num. 
of encountered 
objects

Num. 
of identified 
objects

Num. 
of unidentified 
objects

Average 
response 
time

Presented approach 6 38315 36813 (96%) 1502 (4%) 0.79

Traditional approach 6 37854 19315 (51%) 18539 (49%) 0.13

Cloud approach 6 37718 36239 (96%) 1479 (4%) 1.24



Page 23 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

response time due to communication overheads. The improvement mainly results from 
the maturity of CKBs and the GKB which are built upon more than 45,000 records col-
lected from all SAUs sharing CKBs and the GKB. The improvement is also attributed to 
the fact that the objects used in the experiment are relatively simpler and easier to rec-
ognize as the work focuses on object recognition not image processing. The traditional 
approach shows similar results to those of Scenario 1 in Table 2 as they both use only 
LKBs.

In the cloud-based approach, 37718 objects were encountered of which 36239 (96%) 
were identified with the average response time of 1.74 s due to communication over-
heads. Compared to the cloud-based approach, the presented work has the same preci-
sion in object identification and 0.95 s less response time. The time saving mainly results 
from the use of LKB before requesting to the CKB and the GKB.

Conclusion
In this work, we have presented a three-phase decision making approach for self-adap-
tive vehicle systems to improve the precision and performance in object identification 
with competitive precision. To improve precision, the approach makes use of both the 
local knowledge base in the SAU and the context-specific and global knowledge bases 
through web services. To improve performance, the approach uses B-kNN. The valida-
tion demonstrates that the presented approach outperforms the traditional approach 
by 45% improvement in object identification and the cloud-based approach by 0.95 s in 
average response time. On the other hand, the presented approach takes 0.66 s more 
in average response time over the traditional approach, while remaining competitive in 
precision over the cloud-based approach.

The presented three-phase decision making approach can be applied to other domains 
such as the computer network domain for smart routing and the smart grid domain for 
intelligent electrical devices (IEDs) where self-adaptability can be utilized. We plan to 
investigate an extend to which the presented approach can be applied to the automo-
tive domain where vehicles can share their knowledge base with neighboring vehicles 
through vehicle-to-vehicle (V2V) communication. This can be viewed as sharing LKBs 
of SUAs, which is different from sharing CKB and GKB. For such sharing in V2V com-
munication, accessibility as to who can share and types of data to be shared should be 
addressed with timing constraints which are critical in a real-time domain.
Authors’ contributions
All Authors have equal contributions to this research. All authors read and approved the final manuscript.

Authors’ information
Dhrgam AL Kafaf is a research engineer and lecturer. He received the Ph.D. in Computer Science from Oakland University, 
M.S. in Computer Science from Lawrence Technological University, and he received B.S.E. in Computer and Software 
Engineering from University of Technology Baghdad in 2018, 2011 and 2002 respectively. His research interests include 
machine learning, self-adaptive systems, and autonomous vehicles.

Dae-Kyoo Kim is an associate professor of the Department of Computer Science and Engineering at Oakland Univer‑
sity. He received the Ph.D. in Computer Science from Colorado State University in 2004. During his Ph.D. work, he worked 
as a technical specialist at NASA\Ames Research Center in 2003. He is a senior member of the IEEE Computer Society.

Lunjin Lu is an associate professor in the Computer Science and Engineering Department at Oakland University. His 
broad research areas are programming languages and software engineering. His research interests include semantic-
based program analysis, program semantics, logic programming, UML modeling, software design patterns, software 
refinement, UML model refinement, and pattern conformance.



Page 24 of 24AL‑Kafaf et al. Complex Adapt Syst Model             (2018) 6:8 

Acknowledgements
To Oakland University for supporting this research and for providing the labs to conduct the experiments for this 
research.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets generated during and/or analysed during the current study are not publicly available. but are available from 
the corresponding author on reasonable request.

Funding
The software Engineering lab at Oakland University funding this research.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 August 2018   Accepted: 8 October 2018

References
Bleicher M, Zabrodin E, Spieles C, Bass SA, Ernst C, Soff S, Bravina L, Belkacem M, Weber H, Stöcker H, Greiner W (1999) 

Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J Phys G Nucl Part 
Phys 25(9):1859

Bonaccorsi M, Fiorini L, Sathyakeerthy S, Saffiotti A, Cavallo F, Dario P (2015) Design of cloud robotic services for senior 
citizens to improve independent living in multiple environments. Intell Artif 9(1):63–72

Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV Library. O’Reilly Media, Inc.
Chen Y, Du Z, García-Acosta M (2010) Robot as a service in cloud computing. In: Proceedings of the 5th IEEE international 

symposium on service oriented system engineering (SOSE), pp 151–158
Cheng SW, Garlan D, Schmerl B (2005) Making self-adaptation an engineering reality. In: Proceedings of self-star proper‑

ties in complex information systems, pp 158–173
Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27
Dorigo M, Schnepf U (1993) Genetics-based machine learning and behavior-based robotics: a new synthesis. IEEE Trans 

Syst Man Cybern 23(1):141–154
Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874
Garlan D, Cheng S-W, Schmerl B (2003) Increasing system dependability through architecture-based self-repair. In: de 

Lemos R, Gacek C, Romanovsky A (eds) Architecting dependable systems. Springer, Berlin, pp 61–89
Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21
Haug EJ (1989) Computer aided kinematics and dynamics of mechanical systems. Allyn and Bacon, Boston
Hickman R, Kuffner JJ Jr, Bruce J.R, Gharpure C, Kohler D, Poursohi A, Francis AG Jr, Lewis T (2014) Shared robot knowl‑

edge base for use with cloud computing system. US Patent 8,639,644
Hu G, Tay WP, Wen Y (2012) Cloud robotics: architecture, challenges and applications. IEEE Netw 26(3):21–28
Kafaf DA, Kim D-K (2017) A web service-based approach for developing self-adaptive systems. Comput Electr Eng 

63:260–276
Kafaf DAL, Kim D-K, Lu L (2017) B-knn to improve the efficiency of kNN. In: Proceedings of the 6th international confer‑

ence on data science, technology and applications. Science and Technology Publications, pp 126–132
Kehoe B, Matsukawa A, Candido S, Kuffner J, Goldberg K (2013) Cloud-based robot grasping with the google object 

recognition engine. In: Robotics and automation (ICRA), 2013 IEEE international conference on, IEEE, pp 4263–4270
Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50
Koenig N, Howard A (2004) Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: Proceedings 

of IEEE/RSJ international conference on intelligent robots and systems, vol 3, pp 2149–2154
Kramer J, Magee J (2007) Self-managed systems: an architectural challenge. In: Proceedings of future of software engi‑

neering, pp 259–268
Liu B, Chen Y, Blasch E, Pham K, Shen D, Chen G (2014) A holistic cloud-enabled robotics system for real-time video track‑

ing application. In: Proceedings of future information technology, pp 455–468
Magee J, Kramer J (1996) Dynamic structure in software architectures. In: ACM SIGSOFT software engineering notes, vol 

21, issuse 6, pp 3–14
Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) ROS: an open-source robot operating 

system. In: Proceedings of ICRA workshop on open Source software
Richardson L, Ruby S (2008) RESTful web services. O’Reilly Media, Inc.
Tian G, Chen H, Lu F (2015) Cloud computing platform based on intelligent space for service robot. In: Information and 

automation, 2015 IEEE international conference on, pp 1562–1566
Wang Y, de Silva CW (2008) A machine-learning approach to multi-robot coordination. Eng Appl Artif Intell 21(3):470–484


	A three-phase decision making approach for self-adaptive systems using web services
	Abstract 
	Introduction
	Related work
	Three-phase decision making process
	B-kNN
	Architectural components
	Self-adaptive unit (SAU)
	Monitor 
	Analyzer 
	Local planner 
	Executor 

	Web services
	Context-specific knowledge base
	Global knowledge base


	Validation
	Scenarios
	Scenario 1: Identifying objects known to LKB
	Scenario 2: Identifying objects unknown to LKB, but known to CKB
	Scenario 3: Identifying objects unknown to LKB and CKB, but known to GKB
	Scenario 4: Identifying objects unknown to LKB, CKB, and GKB
	Scenario 5: Sending Feedback to GKB

	Quantitative analysis
	Comparative analysis

	Conclusion
	Authors’ contributions
	References




