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dynamically change during system runtime. Related approaches of decentralized
aggregation are function-dependent, interaction-dependent, assume static values or
cannot always tolerate duplicates and continuously changing information.

Methods: This paper introduces DIAS, the Dynamic Intelligent Aggregation Service.
DIAS is an agent-based middleware that addresses these issues with a holistic
approach: an efficient availability of the distributed information in every node of the
network that enables the simultaneous computation of almost any aggregation
function. Such an abstraction initially requires a significant communication and storage
cost and has a rather large overhead. These issues are resolved by introducing an
implicit local representation and storage of the explicit distributed information:
aggregation memberships in bloom filters.

Results: The performance impact of bloom filters in DIAS is critical for its applicability
as it compensates and reduces the initial high communication and storage required for
such an abstraction.

Conclusions: Experimental evaluation under various aggregation and
resource-constrained settings shows that DIAS is an efficient and accurate
decentralized aggregation service.
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Background
The increasing scale and decentralization of distributed systems and applications results
in an information gap: Agents, with partial knowledge about a system, require the local
availability of collective and summarized knowledge about the state of the whole system
to perform decision-making, adapt execution of their tasks and meet global applica-
tion objectives. Therefore, aggregation of information becomes a crucial requirement
to acquire such collective and summarized knowledge for a wide range of distributed
applications.

Centralized computation of aggregation functions is straightforward as the whole set of
information is available in one location. However, centralized aggregation is not always
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an option for reasons that may concern scalability or privacy. This paper focuses on the
problem of decentralized aggregation of information distributed across the nodes of a net-
work. Aggregation functions such as SUMMATION, AVERAGE, MAXIMUM, etc. are locally
computed by each node of the network. The input of these functions can be arithmetic
values collected from each node of the network as well. Communication, storage and pro-
cessing costs are fundamental issues that challenge the design of a generic service for
decentralized aggregation.

Related aggregation methodologies are function-dependent, interaction-dependent,
assume static values or cannot always tolerate duplicates and continuously chang-
ing information (Ahmed et al. 2006; Haridasan and van Renesse 2008; Jelasity et al.
2005; Kashyap et al. 2006; Kempe et al. 2003; Nath et al. 2008). In contrast, this paper
introduces a generic, agent-based and middleware for dynamic decentralized aggre-
gation, DIAS, the Dynamic Intelligent Aggregation Service. DIAS is based on a holistic
approach: availability of distributed information in every node of the network that enables
simultaneous computation of almost any aggregation function. DIAS is based on the
concept of aggregation membership to make this holistic approach possible. Aggrega-
tion memberships are aggregation information derived and abstracted from the explicit
aggregation values. For example, an agent has memberships of other agents whose infor-
mation is aggregated. Complementarily, an aggregate of an agent has memberships of
aggregated information in other agents. This paper shows that such implicit informa-
tion can be locally and efficiently stored in probabilistic data structures, the bloom filters
(Bloom 1970).

A known problem of bloom filters is that of false positives (Bloom 1970). A false pos-
itive incorrectly denotes that some information is stored in a bloom filter when it is
actually not. DIAS is able to detect inconsistencies such as duplicate and outdated infor-
mation under the effect of false positives in bloom filters. This paper shows how detection
is possible by mutually checking the memberships between the remote agents of DIAS
without introducing additional communication. Experimental evaluation illustrates the
efficiency and performance trade-offs of DIAS. High accuracy is achieved under a range
of aggregation and resource-constrained settings.

This paper is outlined as follows: Section “Problem description” illustrates the prob-
lem description and related work. Section “System overview” outlines the architecture
of DIAS. Section “Modeling of dynamics” introduces the model of dynamic aggregation
in DIAS. Section “Dissemination and collection” illustrates the information dissemina-
tion and collection in DIAS. Section “Consistent aggregation sessions” shows the concept
of aggregation membership and Section “Computation of aggregates” outlines how they
are used to accurately compute aggregation functions. Section “Realization based on
bloom filters” follows with a bloom filter realization of the aggregation memberships.
Section “Experimental evaluation” evaluates the performance of DIAS. Section “Discus-
sion and future work” discusses the approach of DIAS and outlines future work. Finally,
Section “Conclusions” concludes this paper.

Problem description

Assume an overlay network of nodes, all having an aggregation value about the state of
a (application) parameter. In this paper, an aggregation value is represented by a numer-
ical (real) value. Aggregation is defined in this paper as the computation of aggregation
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functions (aggregates), e.g., SUMMATION, by all of the nodes of an overlay network with
input the total aggregation values in this overlay network. Aggregation is decentralized if
it can be performed without using any centralized computational entity for this purpose.
Most decentralized aggregation systems have the following features:

® Function-dependence: Distributed applications may require the computation of a
wide range of aggregation functions. AVERAGE, SUMMATION, MAXIMUM and
MINIMUM are common numerical aggregation functions. Textual and rule
aggregation are more complex. Aggregation functions share different mathematical
properties (Calvo et al. 2002) and, therefore, their computational requirements may
vary significantly. Due to this reason, different aggregation methodologies have been
developed for specific aggregation functions or classes of aggregation functions.

For example, gossip based aggregation (Jelasity et al. 2005) calculates the AVERAGE
function as an iterative variance reduction algorithm over the values of nodes in an
overlay network. Nonetheless, the COUNT operator that estimates the number of
participating nodes cannot be calculated without additional protocol complexity to
effectively apply the ‘inverse birthday paradox’ (Jelasity et al. 2005). The SUMMATION
operator is derived by the product estimation of AVERAGE and COUNT and therefore,
two instances of gossiping protocols are required. Similar issues are raised

(Kempe et al. 2003) together with inaccuracy issues when there are failures in the network.

e [nteraction-dependence: Most aggregation methodologies are designed in line with
the properties, strengths and constraints of the network interaction mechanism that
supports them, i.e., gossiping or routing over tree topologies. Replacing the
interaction mechanism of an aggregation methodology with a different one makes
this methodology inaccurate, cost-ineffective and actually infeasible. The
interaction-independence of aggregation methodologies that this paper focuses on
concerns the actual option to use a single aggregation mechanism over different
interaction mechanisms. However, this abstraction cannot satisfy that the
performance of aggregation is comparable between different interaction mechanisms.
The variance reduction algorithm applied in gossip-based aggregation (Jelasity et al. 2005)
requires gossiping communication between peers in a network. Information diffusion
based on which distributed aggregation is performed also depends on a similar
gossiping protocol (Kempe et al. 2003). Aggregation over structured topologies, such
as trees, relies on multicasting. For example, tree aggregation requires unique paths
between nodes in an overlay network to avoid double-counting. This requirement is
not satisfied in unstructured (random) overlay networks maintained by gossiping
protocols.

e Static aggregation values: Aggregation values may change and be derived from a
continuous or discrete domain of values. Speed of change matters. Distributed
aggregation schemes may be infeasible if aggregation values are highly dynamic.
Investigating the degree of tolerable changes in the aggregation values of nodes is
crucial for realizing a dynamic aggregation system. Adapting the aggregates with the
new aggregation values is potentially a better solution than performing an expensive
re-computation.

e Jnaccuracies: Inaccuracies are estimations of aggregates with significant deviations
from the actual aggregates. Two types of inaccuracies are studied:
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(i) double-counting and (ii) outdated aggregation values, i.e., values that have
changed during runtime. In duplicate-sensitive aggregation functions, such as
SUMMATION, summing aggregation values twice results in an inaccurate aggregate.
The same holds if aggregation values of nodes in an overlay network change
dynamically during system runtime. Aggregates require adaptation to converge to
their most recent actual values. Other inaccuracies related to network uncertainties,
fault-intolerance etc. are not the focus of this paper and are usually related to the

adopted interaction mechanism (Kennedy et al. 2009).

The above features appear to a certain degree in most of the existing aggregation
approaches (Ahmed et al. 2006; Haridasan and van Renesse 2008; Jelasity et al. 2005;
Kempe et al. 2003; Kashyap et al. 2006; Nath et al. 2008) and are mentioned in the related
surveys (Chitnis et al. 2008; Kennedy et al. 2009). These features are actually the limi-
tations of these systems in the sense that they are not generic and adaptive enough to
perform aggregation under different network conditions and application requirements.
Section “Comparison with related work” discusses and compares these approaches and
their limitations in detail. Appendix A summarizes the related aggregation mechanisms
discussed in this paper. Motivated by these issues, this paper focuses on the problem of
designing a service for dynamic, accurate and decentralized aggregation decoupled from

a specific interaction mechanism and aggregation function.

System overview
This paper introduces DIAS, the Dynamic Intelligent Aggregation Service. DIAS is a mid-
dleware service that computes aggregation functions from an input set of continuously
changing aggregation values distributed in every node of a network. Figure 1 illustrates
the three-level architecture of DIAS.

Each level is built by an aggregator and disseminator agent. These two agents, within a
node, provide aggregation values to the agents of other nodes and consume aggregation

regation
l i A Aggregates I
Aggregation
Valaes Aggregation
. . Unexploited /
Cl?ssl.ﬁcatlon ________________ Outdated
Criteria Aggregators
Disseminator/
Aggregator Classification
Memberships
Gossiping Aggregator
@stmar Samples
Random . . " f
S e Dissemination and Collection
Node

Figure 1 The DIAS middleware architecture.
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values from them. However, note that, in practice, applications may not require all agents
to disseminate and aggregate values. Section “Discussion and future work” discusses this
issue in more detail.

The bottom level of DIAS is responsible for a gossip-based (Jelasity et al. 2007) dissem-
ination and collection of aggregator samples. Disseminators gossip location information
of agents to which the aggregation values need to be sent. Gossiping can be continuously
parameterized by gossiping criteria provided by the middle level.

The discovered aggregator samples are provided to the middle level in which they
are classified. Each disseminator classifies the received aggregators into three possible
classes: (i) exploited, (ii) unexploited and (iii) outdated. These classes indicate if the
aggregation value of a disseminator has been aggregated before by the classified aggre-
gators, if it has not been aggregated or if an earlier (outdated) aggregation value has
been aggregated that has changed. Classification is performed based on historical aggre-
gation information generated during runtime®. The middle level provides to the top
one contact information of possible aggregators to which aggregation values can be
aggregated. DIAS is able to tune discovery of new aggregation values instead of updat-
ing the existing aggregated values and the other way around. These are the adaptation
strategies of DIAS and are configured by the classification criteria provided by the top
level.

Finally, the top level interacts with the remote aggregators to exchange aggregation
values. These overlay interactions have two possible semantics: exploitation of a new
aggregation value or update of aggregates with the most recent aggregation value. A
number of aggregates are computed and delivered to the applications as defined by the
aggregation criteria.

DIAS addresses the limitations illustrated in Section “Problem description” at a
cost of higher communication overhead compared to related methodologies that spe-
cialize in specific aggregations functions or interaction mechanisms (Jelasity et al. 2005;
Nath et al. 2008). As most of these limitations are related to a lack of abstraction, modular-
ity and customization of aggregation mechanisms, DIAS is designed to split the complexity
of dynamic decentralized aggregation into three organizational levels.

Memberships of DIAS are the means to detect inaccuracies such as double-counting
and outdated aggregation values. However, a decentralized system cannot explicitly store
memberships of all aggregation values locally in each node. This approach is neither
scalable, efficient nor decentralized. To overcome this challenge, the probabilistic data
structures of bloom filters (Bloom 1970) are used in DIAS for management of mem-
berships. Bloom filters provide tremendous space savings at a cost of false positive
memberships. DIAS, however, is able to detect false positive inconsistencies and, therefore,
maintain a high accuracy level in the computed aggregates without introducing additional

communication cost.

Modeling of dynamics

This section introduces a model for aggregation of states. A state represents a (aggre-
gation) value of an application parameter at a specific point in time. The state of an
application parameter changes during runtime. Decentralized aggregation computes
aggregation functions that receive as input the states of different nodes for the same
application parameter.
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Assume that each of the # nodes of DIAS contains an aggregator A; and a dissemina-
tor D; with a selected state s that is the one to be aggregated by all nodes. During each
runtime iteration, selected state s; can be equal to one and only one state from a finite
number v of locally unique possible states s; = s?|sl«1| . Isl«v_l. For example, in a movie
recommender system, movies are ranked with one to five stars. The number of stars are
the possible states and an actual ranking of a movie is the selected state. Although the
possible states in each node are unique, two possible states between different nodes may
have the same value. As the selected state changes, an earlier selected state is indicated
as §;.

The system goal is the aggregation f(s), s}, .. .,s,_;) of all of the selected states in the
overlay network during an aggregation phase. An aggregation phase is defined as the time
period in which the selected states may change but the set of possible states remains
the same. During an aggregation phase, the aggregates change continuously as a result
of changes in the local selected states. Aggregation does not converge to a single value
but rather to a distribution of aggregates over time. Section “Discussion and future work”
discusses the applicability of this model in distributed applications.

Dissemination and collection

Decentralized aggregation requires the means to access all of the locations of aggregators
that acquire the selected states of disseminators. Dissemination and collection of aggre-
gator samples via gossiping provide lookup in a distributed environment. An aggregator
sample contains the network identifier of this aggregator, e.g., IP address and port num-
ber. Each agent of the bottom level maintains its random view that is a list of size r with
random aggregator samples that are continuously updated via the gossiping protocol of
the peer sampling service (Jelasity et al. 2007).

Gossiping provides a highly connected and dynamic overlay network for aggregation.
Furthermore, continuous update of the random view enables the discovery of changing
aggregation values. The bottom level can be realized with different mechanisms beyond
gossiping, e.g., flooding (Jiang et al. 2003), random walks (Gkantsidis et al. 2006) and
DHTs (Yuh-Jzer et al. 2005). However, these mechanisms require high customization and
DHTs require a topological maintenance. Their utilization becomes more complex within
a generic decentralized aggregation service.

Consistent aggregation sessions

The middle level of DIAS provides aggregators to the top level that guarantee consistent
aggregation sessions. An (unidirectional) aggregation session concerns (re)computation
of the aggregates by an aggregator A; after the receipt of a selected state from a remote
disseminator D;. If (re)computation occurs in both aggregators of nodes i and j, this aggre-
gation session is bidirectional. An aggregation session is consistent if the input selected
state of performed (re)computation by an aggregator A; is not (i) a duplicate or (ii) an
outdated selected state that has now changed. A consistent aggregation session between
an aggregator A; and a disseminator D; is mutually satisfied if and only if the following
conditions hold:

e The disseminator D; disseminates for first time (i) its selected state, or (ii) its updated
selected state to the aggregator A;.
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® The aggregator A; aggregates for first time (i) the selected state, or (ii) the updated
selected state of the disseminator D;.

An inconsistent aggregation session usually results in inaccurate aggregates. Note that
double-counting does not always result in inaccuracies as some aggregation functions are
insensitive to duplicates, i.e., MAXIMUM or MINIMUM. However, duplicates cause addi-
tional communication and processing overhead in nodes. For this reason, this paper treats
inconsistent aggregation sessions as subject of prevention.

Selecting aggregators that result in consistent aggregation sessions requires some form
of history information about the past aggregation sessions performed. This section intro-
duces the concept of aggregation memberships and their use to classify aggregators in the
outdated, exploited and unexploited classes. Beyond consistency, this classification pro-
vides the option to perform the update of aggregates in favor of (i) changing (outdated)
aggregation values or (ii) unexploited aggregation values. These two options distinguish
the two adaptation strategies of DIAS.

Note that classification is used as the means to guarantee consistent aggregation
sessions that enable a more generic design for aggregation in order to overcome the
limitations illustrated in Section “Problem description”

Aggregation memberships

If an arbitrary aggregation value is selected from the network during an aggregation
phase, this aggregation value has a probability of membership in the computed aggre-
gates. Aggregation membership Mo,y (member) of a certain ‘member’ to a certain ‘group’
is either positive or negative. This concept can be applied to the aggregation dynamics
illustrated in Section “Modeling of dynamics” Each agent of the middle level in a node i
stores unique identifiers of possible states S?, cees S;-Fl corresponding to the actual possi-
ble states s?, e ,s;’_l. Respectively, S; and S; refer to the unique identifiers of the selected
s; and outdated §; state in node i. The middle level stores a representation of the local
states, their unique identifiers, and the top level stores the actual states, e.g., numerical or
other type. The middle level also uses the local unique network identifier of the node to
map the local aggregator A; and disseminator D;. Therefore, A; = D;. The following four
aggregation memberships are defined in a unidirectional aggregation session between an
aggregator A; and a disseminator D; in two nodes i and j:

Membership 1 (Mp, (A;)). An aggregator in a disseminator.

A disseminator D; stores the identifier of an aggregator A; to which it has disseminated
its selected state at least once during an aggregation phase.

Membership 2 (Ms (Aj)). An aggregator in a possible state.

A disseminator D; stores the identifier of an aggregator A; for each possible state
identified as S¥ aggregated by this aggregator.

Membership 3 (M A; (Dy)). A disseminator in an aggregator.

An aggregator A; stores the identifier of a disseminator D; from which it has aggregated

its selected state at least once during an aggregation phase.

Membership 4 (Ma, (S))- A selected state in an aggregate.
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An aggregator A; stores the identifier of a selected state S} aggregated from a dissemina-
tor D;.

Figure 2 illustrates the aggregation memberships of DIAS stored in the middle level.
Aggregation memberships can be used as follows: Assume an aggregation session
between disseminator D; that sends its selected state S; and aggregator A; that receives
this state. Disseminator D; knows if aggregator A; aggregates its selected state S; for
first time by checking aggregation membership Mp, (A;). Furthermore, D; knows if A;
has aggregated a different possible state earlier by checking all aggregation memberships
My (Aj). Respectively, aggregator A; knows if it has aggregated a selected state from dis-
seminator D; by checking aggregation membership Mp; (D;). Moreover, A; knows if the
specific selected state S} has been aggregated earlier by checking aggregation membership
Mp; (S;) Therefore, both (i) duplicate and (ii) outdated selected states can be detected
between an aggregator and a disseminator and the consistency of an aggregation session
is satisfied.

Aggregation memberships represent two mutual conditions resulting in information
redundancy: Both aggregators and disseminators store membership information about
their in-between aggregation. Section “Realization based on bloom filters” shows how
this redundancy is exploited in an efficient model realization of aggregation memberships
based on bloom filters.

Classification

Classification performed in the middle level is based on an aggregation pool containing
three aggregation views. These views are queues of a limited size in which aggregators
are classified. Three aggregation views are defined in the aggregation pool: (i) exploited,
(ii) unexploited and (iii) outdated. The exploited aggregators of a disseminator D; are the
ones that have aggregated its earliest selected state s;. The unexploited aggregators of a
disseminator D; are the ones with which a consistent aggregation session has not been
established. Finally, the outdated aggregators of a disseminator D; are the ones that have

Membership of an aggregator in
Possible a possible state - Mg:(A)
States —mmmEmEmEmEEs

! Membership of an aggregator
v in a disseminator - M;(A)

Disseminator i Aggregator j

IMernbership of a disseminatorl
in an aggregator - M, (D) 1

Selected State il Aggregates

Membership of a selected
state in an aggregate — M,(s;)

Figure 2 The aggregation memberships of DIAS.
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aggregated a selected state of this disseminator earlier but since then this selected state has
changed. Aggregation views are used as a buffer and have a limited size to allow scalability
and decentralization.

Algorithm 1 illustrates the classification of an aggregator A; in the aggregation pool
based on the aggregation memberships Mp, (A;) and Mg, (A;) of a disseminator D;. When
A; is received by the bottom level, the middle level executes a membership query Mp, (A,-)
that indicates if a consistent aggregation session has been performed between A; and
D;. If membership is negative, aggregator A; is classified as unexploited. Otherwise, if
membership is positive, the next membership query Mg (Aj) is performed to indicate if
aggregator A; has computed in its aggregates the most recent selected state S;. If this mem-
bership is positive, aggregator A; is exploited (duplicate aggregation value), otherwise,
aggregator A; has computed an earlier selected state of D; and therefore A; is classified as
outdated.

Algorithm 1 Classification in the aggregation pool.

Require: aggregator A; from bottom level
1: if Mp, (A}) : negative then
2 Ajis unexploited
3. elseif Mg (A)) : negative then
4 Ajisoutdated
5: else
6: A is exploited
7: end if

If the selected state of disseminator D; changes, the aggregation pool requires rearrange-
ment. Aggregators contained in the exploited view before the change of the selected state
move to the outdated view. In contrast, aggregators contained in the outdated view before
the change of the selected state are queried again (MS; (Ay)) and are classified as outdated
or exploited. As a result of this querying, the aggregation pool remains consistent and
adapts instantly after a change of the selected state.

Adaptation strategies

A consistent aggregation session is established with either an unexploited or an out-
dated aggregator. Priority is defined by the classification criteria received from the top
level. These two options are the two adaptation strategies of DIAS and are referred to as
EXPLOITATION and UPDATE respectively.

EXPLOITATION is a more relevant adaptation strategy if selected states do no change
often and the aggregates still converge to their actual values, for example, at the beginning
of aggregation or during network scaling with new nodes. In contrast, UPDATE is more
relevant for steady size of networks and when aggregates have converged to the actual
values. Changes of the selected states after convergence require adaptations of aggregates.

Selection of aggregators from the aggregation pool is conditional to the availability of
aggregators in the class of preference for each adaptation strategy. This means that if
EXPLOITATION is adopted but the unexploited view of the aggregation pool is empty, then
outdated aggregators are selected corresponding to the selections of the UPDATE strategy.
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The same holds if the UPDATE strategy is adopted and the view of outdated aggregators
is empty: unexploited aggregators are selected. To this extent, the adaptation strategies of
DIAS are dynamic.

Adoption of an adaptation strategy can be static, e.g., a system parameter contained in
the classification criteria, or dynamic during system runtime. For example, the adopted
adaptation strategy may change based on monitored parameters or based on a time period
that aggregates do not change significantly.

Aggregation session
An aggregation session requires remote interactions between aggregators and dissemina-
tors to guarantee its consistency. Figure 3 illustrates these interactions between a node
i and j during a bidirectional aggregation session. A unidirectional aggregation session
is established with two messages depicted by the arrows (1) and (2). A bidirectional
aggregation session includes a third message depicted by arrow (3).

The ‘request’ message, illustrated by arrow (1), initiates an aggregation session and

contains the following information:

e Flag: This denotes a unidirectional ‘uni’ or bidirectional ‘bi’ aggregation session.

e Class: This denotes if the aggregator A;, receiving this message, is classified by a
disseminator D; as unexploited or outdated.

® Dj: This is the identifier of the disseminator D; that has performed the classification
of the aggregator A;.

. S/’.: This is the selected state identifier of D;.

® S;: This is the earlier selected state identifier of the disseminator D; aggregated by A;.

A ‘response’ message, illustrated by arrow (2) or (3), completes a unidirectional or
bidirectional aggregation session and contains the following information:

4 Node j N Node i )

Disseminator - D; Aggregator - A,

Adgregator - A, L g 4 Disseminator - D,

AN J

-

Figure 3 The remote interactions of DIAS.
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e Flag: This denotes a unidirectional ‘uni’ or bidirectional ‘bi’ aggregation session. A
third flag, the ‘uni-bi’, denotes the upgrade of a unidirectional aggregation session to
a bidirectional one by including a ‘request’ message flagged as ‘bi’.

® Class: This denotes if the aggregator A;, sending this message, is classified by a
disseminator D; as unexploited or outdated.

e A;: This is the identifier of the aggregator A;.

e ‘Request’ message: This integrated message is optional. It upgrades the unidirectional
aggregation session to a bidirectional one.

Note that the integrated ‘request’ message in the ‘response’ message provides one
message fewer for a bidirectional session to complete.

Computation of aggregates

The top level is responsible for the computation of aggregates. An aggregate is continu-
ously computed based on an aggregation function provided by the aggregation criteria.
Aggregates are updated by sending the value of the selected state to aggregators provided
by the middle level and classified as unexploited. If the provided aggregators are classified
as outdated, the earlier selected state is sent as well.

The top level forms an overlay network between aggregators and disseminators linked
with overlay links that have two possible semantic values: unexploited or outdated but
not exploited. Therefore, the computed aggregation functions exclude overlay links from
the top level that result in duplicates (exploited aggregators). The aggregation member-
ships, the classification, the selection of aggregators are all complexity hidden from the
aggregation process of the top level. As explained in Section “Adaptation strategies’, the
adaptation strategies tune the aggregation process in favor of (i) updating aggregates
with the most recent selected states (UPDATE) or (ii) discovering new selected states
(EXPLOITATION). The top level has to only provide the classification criteria that trigger
this optimization and inform about changes in the selected state.

Delivery of aggregates to applications may be performed periodically. Another option
is a minimum deviation threshold over a certain time period that denotes convergence to
the actual aggregate values. The aggregation criteria define these requirements.

Realization based on bloom filters

Explicit storage of aggregation memberships in every agent of the middle level is not a
scalable, efficient and decentralized solution. Aggregation memberships can be a cost-
effective and viable approach in large-scale decentralized environments by using an
implicit storage mechanism: bloom filters (Bloom 1970).

A bloom filter is a probabilistic data structure for efficient membership storage and
querying. A bloom filter is based on a number of k hash functions that hash an element in
a limited binary space of 2™ size, where m is the size of the bit vector in which information
is stored. More specifically, each hash function outputs a random index in this binary
space.

A simple bloom filter supports insertions and membership queries. During an insertion,
the bits that are indexed by the hash functions are set to 1. During membership queries,
the membership of an element in the bloom filter is confirmed if all of the bits indexed by
all of the hash functions are 1.


http://www.casmodeling.com/content/1/1/19

Pournaras et al. Complex Adaptive Systems Modeling 2013, 1:19 Page 12 of 29
http://www.casmodeling.com/content/1/1/19

Counting bloom filters additionally support removal of memberships (Li et al. 2000).
This is achieved by representing the storage space with integers, instead of single bits,
that act as counters. Insertions increment the counters indexed by hash functions and
removals decrement respectively. Data overflow by consecutive insertions is prevented by
choosing an adequate size of 3 - 4 bits for the integers. Therefore, a counting bloom filter
is 3 - 4 times larger than a simple one.

Each of the memberships illustrated in Figure 2 is stored in a bloom filter. More specif-
ically, a disseminator D; has a simple bloom filter for storing Mp, (Aj) memberships
and v counting bloom filters, one for each possible state, for storing MS? (A,-) mem-
berships. The counting bloom filters provide the flexibility to reflect the changes of
the selected states. For example, in an aggregation session between a disseminator D;

and an outdated aggregator A;, the membership My (A)) is removed from the count-

ing bloom filter of the earlier selected state 5; and the membership Mg (A;) is added
in the counting bloom filter of the most recent selected state S;. Complementarily, the
aggregator A; has a simple bloom filter for storing the Ma, (D;) memberships and a
counting bloom filter for storing the Mp, (S;) memberships. This provides a consistent
update of aggregates by replacing textsfoutdated selected states with the most recent
ones.

The space saving achieved by bloom filters come at the cost of false positives. False
positive membership indicates that a state or agent identifier is hashed in a bloom filter
when it is actually not hashed. The probability of false positives depends on (i) the number
of elements stored in the bloom filter, (ii) the number k of hash functions and (iii) the
size 2™ of the storage space. The minimum number of bits in a simple bloom filter x that

hashes # elements and results in a certain probability Py, (x) of false positives is computed

In P, (x)
m o o
as2M = —n n 22

sessions (inaccurate aggregates) and additional communication overhead if they are not

(Deke et al. 2010). False positives can cause inconsistent aggregation

detected and eliminated.

The space savings computed for a bloom filter can be outlined as follows: Assume
at least 128# bits stored in conventional data structures such as an array. The 128n
bits are actually # number of agent or state memberships represented by global unique
identifiers of 128 bits. A hash table requires even a higher storage space due to the
additional storage of indexes that enhance searching operations. In contrast, assume a

bloom filter x with a probability P (x) = 0.01 of false positives that stores the same
In Py, (x)
(In 2)2
array stores 128/9.6 ~ 13 times the space of this bloom filter. For a bloom filter with

number 7 of memberships. The relation 2™ = —n shows that, in this case, an
Ppy(x) = 0.1 and Pg,(x) = 0.001, its space storage is approximately 56 and 9 times lower
respectively.

Note that false negatives in counting bloom filters may occur if an erroneous element
removal is performed. This removal may result in a biased and inconsistent probabilis-
tic data structure. For example, if a removed element is not actually hashed, then its
removal changes bits indicating memberships of other elements that are actually hashed
(Deke et al. 2010). This paper assumes that false negatives cannot be generated in prin-
ciple if and only if removals are not performed from counting bloom filters. Otherwise,
Section “Second level check” illustrates how false negatives are prevented in DIAS if
removals are performed.
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The mutual membership check

DIAS deals with the problem of false positives in bloom filters by taking advantage
of decentralized mutual membership checks between disseminators and aggregators. A
mutual memberships check, denoted as ‘M in this paper, is the process of querying two
memberships in a disseminator and an aggregator that are assumed to either be both
present or not. For example, the aggregation memberships Mp, (A/) and Ma, (D;) are
mutual. During an aggregation phase, a disseminator stores memberships of aggregator
identifiers and, respectively, these aggregators store memberships of the respective dis-
seminator identifiers resulting in mutual aggregation memberships. My (Aj) and M A; (S;)
are also mutual memberships. Selected state S; of a disseminator D; is associated with the
My (A,») membership of an aggregator A;. Respectively, aggregator A; stores the M, (S;)
membership of the selected state identifier S.

Mutual membership checks provide detection of false positives in the bloom filters
of DIAS. Only if multiple false positives occur between Mp, (Aj)—MAj (D;) and Ms; (Aj)-
Ma, (S;) in a single aggregation session, then an inconsistent aggregation session may
come as a result of these false positives.

Assume two arbitrary memberships M,(a) and M,(b) based on the unique identi-
fiers of two members a and b in the groups x and y respectively. Assume also that
these two memberships are mutual, meaning that they should be both positive or
negative such as My(a) M M,(b) : positive | My(a) M My(b) : negative. My(a) and
My (b) are stored in two simple bloom filters with false positive probabilities Pg,(x) and
Py, (y) respectively. The possible outcomes of the mutual membership check are the
following:

Check 1. if My(a) : positive and M, (b) : positive then My (a) @ M, (b) : positive

My (a) and My (b) memberships are confirmed with a probability of 1 — P, (x)Pp(y).
This confirmation is false if and only if both bloom filters generate a false positive that is
the product Py, (x) P, (y) of their false positive probabilities.

Check 2. if My (a) : positive and M, (b) : negative, or, My (a) : negative and M,(b) :
positive then My(a) @ M, (b) : negative

M, (a) and M, (b) memberships are not confirmed with a probability of 1. In this case,
one of the bloom filters generates a false positive.

Check 3. if My(a) : negative and M, (b) : negative then My(a) M My(b) : negative

M(a) and M, (b) memberships are not confirmed with a probability of 1.

Mutual membership checks provide (i) a decrease in the probability that an inconsis-
tent aggregation session occurs (Check 1) and (ii) detection of false positives (Check 2).
This section introduces a consistency mechanism of aggregation sessions for accurate
aggregates. This mechanism is based on two nested mutual membership checks between
the bloom filters of an aggregator A; and a disseminator D; that define the four possible
outcomes of an aggregation session:

® Exploitation: Aggregator A; and disseminator D; are involved for a first time in a
consistent aggregation session as defined in Section “Consistent aggregation
sessions”. A selected state has not been aggregated before and the aggregates are
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updated with new information. The Mp, (Aj), Ma; (D)), MSQ (Aj) and M, (S;)
memberships are added in the respective bloom filters.

¢ Update: Aggregator A; and disseminator D; have been involved before in a consistent
aggregation session, however, this time the selected state has changed. The aggregator
Aj updates its aggregates with the new selected state. The M, (Aj) membership is
replaced by the Mg (Aj) membership and Mp; (él) is replaced by Mp, (S).

¢ Duplicate: Aggregator A; and disseminator D; have been involved before in an
aggregation session with the same selected state. Aggregation is not performed.

e Inconsistency: Aggregator A; and the disseminator D; are involved for a first time in
a consistent aggregation session but the mutual membership check cannot confirm
this. Alternatively, aggregator A; and disseminator D; have been involved before in an
aggregation session with a different selected state. However, the consistency check
cannot identify the textsfoutdated selected state to replace. These uncertainties are
treated as an inconsistency and are a result of multiple false positives in the bloom

filters.

The two nested mutual membership checks illustrated in Section “First level check” and
“Second level check” show how an aggregation session reaches each of the above possi-
ble outcomes. The results of the memberships are exchanged in the messages defined in
Section “Aggregation session”.

First level check

This mutual membership check identifies if a consistent aggregation session has not been
performed between an aggregator A; and a disseminator D;. Disseminator D; queries the
Mp, (Aj) membership of the A; identifier in its bloom filter. Complementarily, aggregator
A; queries M, (D;) membership. The Mp, (A;) and Ma, (D;) memberships are mutual as
they are either both added in the bloom filters or not. Therefore, a mutual membership
check provides the following benefits at the first level of the nested mutual membership
check: (i) A decrease in the probability of an inconsistent aggregation session that requires
two false positives generated by the two bloom filters. (ii) Detection of a false positive in
either the Mp, (Aj) or Ma; (D;) membership. Algorithm 2 illustrates the first level of the
nested mutual membership check.

Algorithm 2 The first level check.

Require: access to disseminator D; and aggregator A;
1 if Mp, (A)) M Mp; (D;) : negative then

outcome=exploitation

2

3. else
4:  goto Algorithm 3
5. end if

Ensure: outcome

This mutual membership check detects an exploitation outcome in an aggregation ses-
sion if and only if Mp, (A,-) M Ma, (D;) : negative. This outcome is generated if at least
one of the Mp, (A;) and Mp; (D;) memberships, in case of a single false positive, or both
memberships, in case of no false positives, cannot be confirmed. On this first level, the
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exploitation outcome is reached with an absolute certainty. However, two simultaneous
false positives in the Mp, (Aj) and Ma; (D;) memberships are possible. Therefore, fur-
ther examination is required on a second level of a mutual membership check to detect
multiple false positives and lower the uncertainties of the outcomes.

Second level check

The second level of the mutual membership check detects if there is an textsfoutdated
selected state S aggregated from a disseminator D; that differs from its new selected state
S;. The detection is performed by querying every Msx (Aj) bloom filter membership of

the respective possible state S¥ € ’S?, ceos S}’_l } My, (S;’) membership is also queried for
every possible state S. The number o of positive mutual memberships M (A,-) MMp; (Sl“)
define the outcome of an aggregation session as illustrated in Algorithm 3.

Algorithm 3 The second level check.
Require: access to disseminator D; and aggregator A;
1. 0= O, §i = S;

2. foru=0tov—1do

3 if Mgy (A)) M M, (S¥) : positive then
4: Sl' = S;’t

5: o=o0+1;

6: endif

7: end for

8: if o = 0 then

9:  outcome=exploitation

10: else if o = 1 then
11 ifS; # S then

12: outcome=update
13:  else

14 outcome=duplicate
15 end if

16: else {0 > 1}

17:  outcome=inconsistency
18: end if

Ensure: outcome

If there are no positive mutual memberships detected (0 = 0 in line 8 and 9 of
Algorithm 3), there is no positive Ma, (S;‘) membership (no selected state aggregated
before from D;) and/or there is no positive Msx (Aj) membership in any bloom filter of the
possible states. This condition conflicts with the positive result of the mutual member-
ship check Mp, (Aj) M Ma, (D;) in the first level. Both Mp, (Aj) and Map, (D;) memberships
are false positives. The outcome in this case is an exploitation.

If there is one positive mutual membership detected (0 = 1 in lines 10-15), the system
can derive the textsfoutdated selected state S;. The outcome is either a duplicate, if the
textsfoutdated selected state §,' is the same with the new selected state S;-, or an update
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in the opposite case. The uncertainty of this outcome is minimized by the nested mutual
membership checks.

Finally, if more than one positive mutual membership is detected (0 > 1 in lines 16-
18), multiple false positives occur that cannot be identified. These false positives concern
My (Aj) and Mp, (S¥), or Mp, (A;) and Mp; (Dy) in the first level of the nested mutual
membership check. The outcome is an inconsistency and therefore, any aggregation at
this point may result in inaccuracies of the aggregates.

The ‘safer’ approach to handle inconsistencies is to ignore these aggregation sessions
and not perform any aggregation that may result in inaccurate aggregates. However,
not only the aggregates can be influenced in this case. Recall from the beginning
of this section that removal of a membership from a counting bloom filter that is
actually not present introduces false negatives (Deke et al. 2010). Therefore, the fol-
lowing aggregation sessions are prone to inaccuracies as the assumption of no false
negatives does not hold anymore. By skipping inconsistent aggregation sessions, DIAS
makes sure that the condition of no false negatives in counting bloom filters is not
violated.

Experimental evaluation

DIAS is implemented and evaluated in Protopeer (Galuba et al. 2009), a prototyping toolkit
for distributed systems. The experimental settings illustrated in this section are summa-
rized in Appendix B. A network of # = 1500 nodes runs DIAS for £(DIAS) = 800 epochs.
The agents of each node act both as aggregators and disseminators. Each epoch lasts for
T(DIAS) = 1000 ms that is the default parameter value in Protopeer. In practice, the
selection of this parameter is performed based on factors such as the available band-
width in the network. The system initially bootstraps a ring topology. The bootstrapping
period is ¢'(DIAS) = 6 epochs and the size of the ring view is |v(ring)| = 5 for each
node.

A simulated application of dynamically changing states is bootstrapped in
t' (application) = 15 epochs. Each application instance in each node generates v = 5
numerical possible states during each aggregation phase. The possible states are selected
randomly from the range [0, 1) defined by five different beta distributions, one for each
possible state. Appendix C illustrates these beta distributions. The selected state changes

0 (1 v—1 0 : ()t
51Sis...»8; ,8;, etc. Two factors trigger these changes: (i) time and

cyclically as s; = s
(ii) the parameter itself that the possible states represent. These factors are modeled
based on two probabilities: (i) the probability P.(time) of changing a selected state every
period T (application) and (ii) the probability P.(parameter) of change in a specific type
of application parameter. The probability P, (s;) of a node i to change its selected state
is P, (s;) = P.(time)P.(parameter) assuming that the two probabilities P.(time) and
P.(parameter) are independent.

Two types of changes in the selected states are examined: synchronous and asyn-
chronous. In synchronous changes, the selected states of all nodes in the network change
simultaneously. Synchronous changes are modeled as P, (time) = 1 and P (parameter) =
1 for T'(application) = 200 epochs. In contrast, asynchronous changes occur arbitrary
over time. A dynamic setting of asynchronous changes is modeled as P.(¢ime) = 0.4 and
T (application) = 0.7 for T (application) = 10 epochs. In practice, the changes in the
selected states depend on the dynamics of the application.
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The execution period of the top level is synchronized with the one of the middle level
as T'(top) = T(middle) = 1000 ms. The AVERAGE, SUMMATION and MAXIMUM aggre-
gation functions are computed. The messages exchanged by the middle and top level are
integrated. This minimizes the number of exchanged messages A(sessions) to the three
ones illustrated in Section “Aggregation session” The integrated messages additionally
contain the actual states for the computation of the aggregation functions. The aggregates
are provided to the application after every computation.

The middle level is periodically executed at T (middle) = 1000 ms during which z = 10
bidirectional aggregation sessions are initiated at maximum. The size of the aggregation
pool is selected to g = 3 * 15 = 45 with each of the unexploited, exploited and outdated
containing 15 aggregators at maximum. The aggregation pool is filled by classifying e =
15 random aggregator samples collected from the bottom level in each execution period.
Static adoptions of the EXPLOITATION and UPDATE strategies are evaluated.

Aggregation memberships are realized in the bloom filters of the XSiena BloomFilter
library (Jerzak and Fetzer 2008). Double hashing (Dillinger and Manolios 2004) is used
for collision resolution in the hashed elements of bloom filters. The size 2™ of the bloom
filters and the number of hash functions k are selected empirically using the testing tools
of XSiena BloomFilter. The expected number of hashed elements during the performed
experiments is equal to the network size . This selection is performed manually during
system parameterization or in an automated fashion. In the latter case, DIAS is initial-
ized with a default size of bloom filters and computes the system size using the COUNT
aggregation function.

Three schemes are adopted in DIAS: (i) m = 16, k = 24, (ii) m = 14, k = 24 and
(iii) m = 14, k = 6. The first scheme, with 2'® = 65536 bits = 8.192 KB, does not result
in false positives during the performed library tests, whereas false positives appear in the
other two schemes because of the fewer number of bits available for hashing: 2!* = 16384
bits = 2.048 KB. The relation 2" = —n% verifies the probability of false positives. For
n = 1500, the probability of false positives in the first scheme is 0.76 10~?, whereas, for
the other two schemes is 0.005. The second scheme introduces higher randomness com-
pared to the third one due to the higher number of hash functions. However, the second
scheme causes a higher number of bit changes during insertions. This results in a higher
number of potential collisions (Dillinger and Manolios 2004) that cause a higher number
of false positives.

The bottom level is realized by the peer sampling service (Jelasity et al. 2007). The size
of the random view is r = 50 and the execution period is T (bottom) = T(DIAS)/5 =
250 ms. The values of the ‘view selection; ‘view propagation’ and ‘peer selection’ poli-
cies (Jelasity et al. 2007) are selected to maximize the randomness and dissemination
speed.

The efficiency of DIAS is related to how close the values of the computed aggregates
are to the actual ones. This closeness is quantified by two evaluation metrics: (i) accuracy
« and (ii) matching u. Accuracy o is defined as @ = 1 — €/&;,4, where ¢ is the absolute
error and &y, is the maximum probable absolute error. The absolute error is the absolute
difference of the actual aggregate from the computed aggregate. The maximum proba-
ble absolute error is the maximum possible absolute difference that the actual aggregate
and the computed aggregate can have. Note that the convergence of accuracy is partic-
ularly interesting for the evaluation of DIAS as it outlines its speed and adaptivity in the
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computed aggregates. Matching 1 is based on the calculation of the correlation coeffi-
cient and indicates the closeness of the distribution of the computed aggregates to the
distribution of the actual aggregates. This metric is especially useful for the evaluation of
DIAS under asynchronous changes.

The source data from which accuracy is computed are illustrated in Appendix C. Accu-
racy and matching are studied in line with the communication cost of the aggregation
sessions in terms of the number of messages A(sessions) exchanged. The communica-
tion cost of the bottom level is excluded from the illustrated results as it is constant
(Jelasity et al. 2007). The results are interpreted based on the number of aggregation
outcomes that aggregation sessions result in. Finally, the effect of (i) the size of aggre-
gation pool, (ii) the size of aggregation classes, (iii) the number of aggregator samples,
(iv) the number of aggregation sessions (v) and the periodical executions are factors that
are experimentally evaluated by (Pournaras 2013).

Adaptation strategies

This section evaluates the efficiency of DIAS with and without adaptation strategies. For
this reason, the bloom filter scheme of m = 16 and k = 24 is adopted that does not result in
false positives. The case when DIAS does not employ adaptation strategies is referred to as
the RANDOM strategy and concerns random aggregator samples without a classification
in the aggregation pool.

Figures 4a-4c illustrate the accuracy convergence under synchronous changes.
EXPLOITATION and UPDATE converge to the maximum accuracy @ = 1 and adapt the
aggregates within 100 epochs. Matching w is 0.79, 0.59 and 0.90 for AVERAGE, SUM-
MATION and MAXIMUM respectively. The distribution of the exploitation and update
outcomes depicted in Figure 5a and 5b explains the convergence of accuracy. These
outcomes represent z = 10 bidirectional aggregations sessions by n = 1500 aggre-
gators: 10 * 2 % 1500 = 30000 exploitation and update outcomes. Note that, under
synchronous changes, EXPLOITATION and UPDATE have the same effect. The total num-
ber of aggregation sessions with an exploitation outcome are performed within the first
T (application) = 200 epochs. The next aggregation sessions result in update outcomes.

RANDOM also achieves a high accuracy according to Figures 4a-4c, with 0.71, 0.33
and 0.90 matching u for each aggregate respectively. However, RANDOM has a slower
convergence of 150 additional epochs compared to EXPLOITATION and UPDATE. This is
because of the number of duplicate outcomes that reaches 28000 during convergence as
depicted in Figure 5c. EXPLOITATION and UPDATE do not cause duplicate outcomes as
the exploited aggregators are not selected from the aggregation pool.

Figure 4d-4f illustrate the convergence of accuracy under asynchronous changes.
Although P.(time)P.(parameter)n = 0.4 % 0.7 x 1500 = 420 selected states change on
average every T (application) = 10 epochs, accuracy converges to the maximum. Match-
ing u between the actual and computed AVERAGE for EXPLOITATION and UPDATE is
0.57 and 0.70 respectively. RANDOM is not influenced significantly with a matching of
u = 0.66 for AVERAGE. RANDOM reaches exploitation and update outcomes during the
converge period in contrast to EXPLOITATION that mostly reaches exploitation outcomes
in the first 100 epochs (Figure 5d) and update outcomes in the next epochs (Figure 5e).
Similarly with the case of synchronous changes, RANDOM requires 150 additional epochs
to converge compared to EXPLOITATION. A converged number of 10000 duplicate
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Figure 4 Accuracy of adaptation strategies. (a) AVERAGE under synchronous changes. (b) SUMMATION
under synchronous changes. (€) MAXxIMUM under synchronous changes. (d) AVERAGE under asynchronous
changes. (e) SUMMATION under asynchronous changes. (f) MAXIMUM under asynchronous changes.

outcomes depicted in Figure 5f causes this delay. Matching p in MAXIMUM is 0.67, 0.55
and 0.45 respectively for EXPLOITATION, UPDATE and RANDOM. SUMMATION is more
challenging to compute. EXPLOITATION provides the fastest convergence within the first
100 epochs. RANDOM converges in approximately 250 epochs. UPDATE does not con-
verge before the 400th epoch as it does not prefer aggregators from the unexploited view
and is influenced by the changes of the selected states.

Figure 6 illustrates the messages A(sessions) sent during the aggregation sessions.
Under synchronous changes, the distribution of the communication cost during runtime
depicted in Figure 6a corresponds to the exploitation and update outcomes in Figure 6a
and 6b respectively. EXPLOITATION and UPDATE minimize the messages exchanged to
0 when the aggregates converge to their actual values. This is not the case for RANDOM
that continuously exchanges A(sessions) = nz3 = 1500 * 10 % 3 = 45000 messages during
runtime. These messages are generated by 1500 nodes that periodically establish 10 bidi-
rectional aggregation sessions with 3 messages exchanged in each session. This is the how
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Figure 5 Outcomes of adaptation strategies. (a) Exploitation outcomes under synchronous changes. (b)
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the communication cost is estimated for larger networks or a different frequency of aggre-
gation sessions. Under asynchronous changes and during convergence in the first 100
epochs, EXPLOITATION and UPDATE exchange the maximum number of 38000 — 45000
messages that converges to 38000 in the next epochs during which update outcomes are
mainly reached.

This communication cost is significantly lower if the nodes of the network do no run
both an aggregator and a disseminator agent. For example, if the network has 500 of its
nodes with an aggregator and the rest 1000 nodes with a disseminator, the communication
cost is computed in this case as 1000 * 10 x 2 = 20000 messages that is significantly lower
than the aforementioned upper communication cost.

Bloom filter aggregation memberships

This section investigates the impact of false positives in the accuracy o of aggregates and
the communication cost. Specifically, the bloom filters scheme of m = 16 and k = 24 is
compared with two other schemes prone to false positives according to the empirical
investigations: (i) m = 14, k = 24 and (ii) m = 14 and k = 6.

Concerning the accuracy of the computed aggregates, no significant influence is
observed in the two schemes prone to false positives. The matching o between for both (i)
aggregation strategies and (ii) synchronous/asynchronous changes remains almost intact.
For example, the bloom filter scheme with m = 14 and k = 24 results in a 0.01 lower
matching of AVERAGE under synchronous changes compared to the one with m = 16 and
k = 24.

Figure 7 compares the outcomes of aggregation sessions for EXPLOITATION in each
bloom filter scheme. The results of UPDATE are similar and, therefore, are omitted. The
exploitation outcomes are also omitted as they show similar results to those of Figure 7a
and 7d. The bloom filter schemes with m = 14, k = 24 and m = 14, k = 6 miss update
outcomes that actually result in inconsistency outcomes. This is shown in Figure 7a
and 7b under synchronous changes and in Figure 7d and 7e under asynchronous changes.
Figure 7c and 7f show that the scheme with m = 14, k = 24 generates 6 and 9 duplicate
outcomes as a result of false positives during classification.

False positives result in a higher number of messages A(sessions). During classification,
false positives result in inconsistency outcomes. An aggregator A; is incorrectly classified
in the outdated and exploited views if the memberships Mp, (A;) and Mg (A)) are false
positive respectively. Under synchronous changes, incorrectly classified exploited aggre-
gators move to the outdated view causing inconsistency outcomes. Figure 8 illustrates
the number of exchanged messages during runtime for the three bloom filter schemes.
EXPLOITATION is adopted. The results of UPDATE are similar and, therefore, are omitted.

Inconsistency outcomes raise the total number of messages exchanged by 15%. The
same holds for asynchronous changes but the effect is much smaller as changes in the
selected states occur more frequently. In this case, the increase is 2%.

Comparison with related work

Providing a fair quantitative comparison of DIAS with related mechanisms is challeng-
ing as DIAS is designed to be a more generic aggregation service and therefore, it serves
a different purpose. Yet, this section illustrates a number of quantitative observations
concerning the performance of DIAS in comparison with related methodologies.
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Figure 7 Outcomes of bloom filter schemes. (a) Update outcomes under synchronous changes. (b)
Inconsistency outcomes under synchronous changes. (¢€) Duplicate outcomes under synchronous changes.
(d) Update outcomes under asynchronous changes. (e) Inconsistency outcomes under asynchronous
changes. (f) Duplicate outcomes under asynchronous changes.

“m=16, k=24 m=14,k=24 “m=14, k=6 “m=16, k=24 m=14,k=24 “m=14, k=6
w 50000 w» 50000
] o
g 40000 E" 40000
£ 30000 8
g kK 30000
‘S 20000 % 20000
171
2 10000 8 10000
g § o
" 0 100 200 300 400 500 600 700 = 0 100 200 300 400 500 600 700
Number of Epoch Number of Epoch

(a) (b)
Figure 8 Communication cost of bloom filter schemes. (a) Synchronous changes. (b) Asynchronous
changes.

Page 22 of 29


http://www.casmodeling.com/content/1/1/19

Pournaras et al. Complex Adaptive Systems Modeling 2013, 1:19 Page 23 of 29
http://www.casmodeling.com/content/1/1/19

For example, gossip-based variance reduction (Jelasity et al. 2005) computes AVERAGE
approximately 4 — 5 faster than DIAS under static aggregation values. This because the
accuracy convergence of DIAS requires approximately 100 epochs, whereas the gossip-
based variance reduction converges in 20 — 25 (Jelasity et al. 2005) iterations. For
synchronous changes, the performance of the two aggregation methodologies, i.e., num-
ber of messages and convergence speed, becomes comparable as the iterative variance
reduction algorithm requires recomputation of the aggregates. This performance impact
becomes more significant as the frequency of changes increases, for example, more than
4 — 5 times faster convergence for DIAS. Furthermore, if changes become asynchronous,
gossip-based aggregation (Jelasity et al. 2005) becomes infeasible. Recomputations of
aggregates cannot be performed as they require some type of synchronization.

Finally, DIAS does not require any changes in its aggregation methodology if dif-
ferent aggregation functions need to be computed simultaneously. This is the most
cost-effective use of DIAS that motivates its selection for aggregation over related
methodologies.

Diffusion methodologies cannot be applied to a wide range of aggregation functions
and are usually interaction-dependent. For example, MAXIMUM and MINIMUM require
the communication cost of epidemics (Jelasity et al. 2005; Kashyap et al. 2006) that
approaches the one of DIAS.

Other information diffusion and gossiping aggregation mechanisms (Haridasan and
van Renesse 2008; Jelasity et al. 2005; Kennedy et al. 2009; Kempe et al. 2003; Nath
et al. 2008) do not consider dynamic changes of the aggregation values and assume
synchronized recomputations. Coordination of these recomputations in distributed envi-
ronments in not straightforward. Synopsis diffusion mechanisms (Ahmed et al. 2006;
Nath et al. 2008) incorporate incremental updates of aggregates if changes in the aggre-
gation values occur. However, only a relatively low number of changes can be tolerated
compared to DIAS. For example, DIAS tolerates in the illustrated experiments 33600
changes compared to 1000 changes (Ahmed et al. 2006). A high number of items in
the bit vectors of synopsis diffusion causes significant inaccuracies. The false posi-
tives of DIAS do not influence the accuracy of aggregates as they can be detected and
eliminated.

Robust tree overlays are a flexible methodology to compute a wide range of aggre-
gates but require topology self-management (Pournaras et al. 2010) in decentralized
environments. Communication and storage complexity can be higher than the aggre-
gation itself. Performing a relevant evaluation and comparison of aggregation trees
with other more dedicated to aggregation mechanisms, such as DIAS, requires a use-
case context and a specific application scenario. If tree topologies are reused between
different distributed applications, including aggregation, the allocated cost is shared
between these applications something that makes the use of trees more effective
Fei et al. 2001. The unique paths of tree topologies are not required in DIAS as unique
aggregation values are identified by the classification in the middle level. Furthermore,
tree aggregation suffers from an unequal load distribution in nodes and the impact of
failures (Ogston and Jarvis 2010). The nodes close to the root receive a high num-
ber of forwarded messages from the bottom nodes. Similarly, the impact of a failure
close to the leaves is small whereas a single failure close to the root partitions the over-
lay network. These issues do not concern DIAS as it does not depend on a specific
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interaction mechanism. Nonetheless, the realization of the bottom level by the peer sam-
pling service (Jelasity et al. 2007) results in a uniform communication overhead between
nodes.

Discussion and future work

The DIAS architecture provides three levels of abstraction and modularity. The top level
does not have any knowledge about the underlying complexity of classification and aggre-
gation memberships. A wide range of aggregation functions can be accurately computed
as the middle level guarantees that aggregator samples are classified as unexploited or out-
dated. Similarly, the middle level receives aggregator samples discovered by the bottom
level.

A key feature of DIAS is the predefined number of possibles states during an aggregation
phase. A large number of applications are fundamentally based on this assumption and
design. User ranking aggregation in recommender systems (Garcin et al. 2009), is based
on a finite and often restricted number of options for a user to rank an element. In appli-
cations of demand-side energy management (James et al. 2006; Pournaras et al. 2010),
aggregate information about a finite number of alternative demand options improve the
stability of the Smart Power Grid.

Dissemination and collection of all aggregation values in every agent of the network
requires a significant communication cost. One way to decrease this cost is to elim-
inate the number of aggregators and disseminators in a network. Section “Adaptation
strategies” shows that the communication cost of DIAS is decreased more than half if the
network is split into the 2/3 of the nodes running disseminators and 1/3 aggregators.
It is not always necessary for each node to perform both aggregation and dissemina-
tion as various applications do not require this. This is especially the case if nodes
have different roles in a network, e.g., consumers and producers in the Smart Power
Grid.

DIAS is based on the exchange of aggregator samples instead of disseminator samples.
In the current design of DIAS, aggregation values are disseminated to aggregators instead
of the aggregators requesting the aggregation values. The Ma, (S;) membership of aggre-
gators cannot be used during the classification process as the selected state S/’. is not
known. This issue can be overcome by injecting the selected state in disseminator samples
exchanged by the bottom level.

Experimental evaluation illustrates the high accuracy and matching achieved even in
the case of false positives in bloom filters. Tolerance to false positives provides large
data space savings. Accuracy is maintained even if the size of bloom filters decreases
significantly, resulting in a high number of detected false positives. A future exten-
sion is the dynamic and automated allocation of larger space in the bloom filters based
on accuracy requirements under false positives. Alternative approaches to bloom fil-
ters are also considered in future work, e.g., hash compaction (Dillinger and Manolios
2004).

The classification of aggregator samples in the aggregation pool proactively prevents
duplicate outcomes that increase communication overhead. The mutual membership
checks reactively detect duplicate outcomes not detected during classification due to false
positives. Mutual membership checks guarantee highly accurate aggregates, especially
in the case of duplicate-sensitive aggregation functions such as SUMMATION, without
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introducing additional communication cost. The performance of RANDOM shows the
large communication cost that duplicate outcomes cause and the large savings achieved
by EXPLOITATION and UPDATE. Other future work concerns the evaluation of DIAS and
its applications in various network conditions, such as churn (Kennedy et al. 2009) and
latency.

Conclusions

This paper concludes that DIAS is a generic and middleware service for dynamic decen-
tralized aggregation in large-scale distributed networks. The aggregation approach of
DIAS is holistic: a local and duplicate-free availability of the distributed aggregation values
that enables the simultaneous computation of almost any aggregation function. Achieving
this abstraction in a cost-effective manner and without depending on a specific interac-
tion mechanism is a challenge that has not been addressed in related work. DIAS meets
these requirements by introducing an implicit representation and storage of the explicit
distributed aggregation values: aggregation memberships in bloom filters. Ultimately,
the generic design and applicability of DIAS results in a higher communication over-
head compared to methodologies based on information diffusion (Jelasity et al. 2005;
Nath et al. 2008). This is the trade off end users of such aggregation systems have to deal
with: more generic applicability versus higher communication overhead.

The experimental evaluation shows that DIAS achieves high accuracy under syn-
chronous and asynchronous changes of the aggregation values. Even when using bloom
filters with a high number of false positives, accuracy is maintained almost entirely due to
the mutual membership checks. The classification of aggregator samples and their selec-
tion based on two adaptation strategies provide (i) the minimization of duplicates that
increase inaccuracies and communication overhead and (ii) the intelligent adaptation of
aggregation in different network conditions.

Appendix A: Overview of related work
Table 1 summarizes the related aggregation mechanisms discussed in this paper.

Table 1 An overview of related decentralized mechanisms to DIAS

Aggregation Aggregation Interaction Storage
function values requirements requirements
DIAS any highly dynamic dissemination bloom filters

and collection

SUMMATION?, COUNT,

(Ahmed et al. 2006) AVERAGE, STANDARD, dynamic flooding, gossiping or  counting sketches
DEVIATION® random walks
(Haridasan and van distribution of static gossiping synopsis diffusion
Renesse 2008)
aggregation values
(Jelasity et al. 2005) AVERAGE, COUNTS, static, gossiping hash maps for COUNT
SUMMATIONY recomputations

algorithm variations
for MINIMUM,
(Kashyap et al. 2006) ~ MAXIMUM, SUMMATION, static group formationand  synopsis diffusion

AVERAGE, RANK gossiping
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Table 1 An overview of related decentralized mechanisms to DIAS (Continued)

algorithm variations
(Kempe et al. 2003) for SUMMATION, static

AVERAGE and quantiles

gossiping synopsis diffusion

(Nath et al. 2008) SUMMATION, static ring/tree topologies, synopsis diffusion
COUNT flooding

(Ogston and  Jarvis SUMMATION? dynamic tree topology parent and

2010) queries children

2t is derived by the AVERAGE and COUNT aggregates.
Bit is derived by the SUMMATION and its squares.

€It is computed using the ‘inverse birthday paradox’ as explained in Section “Problem description”.

d0thers aggregates could be potentially computed.

Appendix B: Experimental settings

Table 2 summarizes the selected experimental settings. Note that multiple values for a

single parameter denote the tested variations of this parameter in some of the illustrated

experiments. The values depicted with bold are the default ones.

Table 2 The experimental settings for the evaluation of DIAS

Parameter Value
n 1500
t(DIAS) 800
Protopeer T(DIAS) 1000
t'(DIAS) 6
v(ring)| 5
t' (application) 15
v 5
type of states numerical
input domain of states [0,1)
generation of possible states beta distribution
distribution for s alpha=>5, beta=25
Application distribution for sﬂ alpha=25, beta=5
distribution for s? alpha=10, beta=5
distribution for s? alpha=5, beta=10
distribution for 5,4 alpha=5, beta=5
selection of a possible state cyclical
T(application) 10 (asynchronous), 200 (synchronous)
Pc(time), P-(parameter) (1.0,1.0),(04,0.7)
Top Level T(top) 1000
fO AVERAGE, SUMMATION, MAXIMUM
T(middle) 1000
z 10
q 45
Middle Level e 15
adaptation strategy adoption static

hashing scheme

double hashing

m, k

(16, 24), (14, 24), (14, 6)
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Table 2 The experimental settings for the evaluation of DIAS (Continued)

r 50
T(bottom) 250
Bottom Level view selection policy swapper
view propagation policy push-pull
peer selection policy random

The bold values are the default ones in the performed experiments.

Appendix C: Source experimental data
Figure 9 shows the five beta distributions® used for the parameterization of the possible
states in the experimental evaluation of DIAS. In each aggregation epoch, a random value
from a given beta distribution is assigned to a possible state.

Figures 10, 11, 12 and 13 illustrate the source data of the experimental results based on
which the accuracy and matching are computed.

(a) (b) (c)

(d) (e)
Figure 9 Five beta distribution used as the input domain of the possible states. (a) alpha = 25, beta = 5.
(b) alpha = 5, beta = 25. (c) alpha = 10, beta = 5. (d) alpha = 5, beta = 10. (e) alpha = 5, beta = 5.
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Figure 10 Aggregates of adaptation strategies under synchronous changes. (a) AVERAGE. (b)
SUMMATION. (€) MAXIMUM.
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Figure 11 AVERAGE of the adaptation strategies under asynchronous changes. (a) EXPLOITATION. (b)
UPDATE. (€) RANDOM.
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Figure 12 SUMMATION of adaptation strategies under asynchronous changes. (a) EXPLOITATION. (b)
UPDATE. (€) RANDOM.
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Figure 13 MAaXIMUM of adaptation strategies under asynchronous changes. (a) EXPLOITATION. (b)
UPDATE. (€) RANDOM.

Endnotes
2During system bootstrapping, there is no need for available historical information to
distinguish between different classes as each aggregation value is by default unexploited.
bGenerated by the Wessa online statistics software, available at: http://www.wessa.net/
(Last accessed: January 2013).
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