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Abstract

Purpose: Infectious diseases are the second leading cause of deaths worldwide,
accounting for 15 million deaths – that is more than 25% of all deaths – each year.
Food plays a crucial role, contributing to 1.5 million deaths, most of which are children,
through foodborne diarrheal disease alone. Thus, the ability to timely detect outbreak
pathways via high-efficiency surveillance system is essential to the physical and social
well being of populations. For this purpose, a traceability model inspired by
wavepattern recognition models to detect “zero-patient” areas based on outbreak
spread is proposed.

Methods: Model effectiveness is assessed for data from the 2010 Cholera epidemic in
Cameroon, the 2012 foodborne Salmonella epidemic in USA, and the 2004-2007 H5N1
avian influenza pandemic. Previous models are complemented by the introduction of
an optimal selection algorithm of surveillance networks based on the Value of
Information (VoI) of reporting nodes that are subnetworks of mobility networks in
which people, food, and species move. The surveillance network is considered the
response variable to be determined in maximizing the accuracy of outbreak source
detections while minimizing detection error. Surveillance network topologies are
selected by considering their integrated network resilience expressing the rewiring
probability that is related to the ability to report outbreak information even in case of
network destruction or missing information.

Results: Independently of the outbreak epidemiology, the maximization of the VoI
leads to a minimum increase in accuracy of 40% compared to the random surveillance
model. Such accuracy is accompanied by an average reduction of 25% in required
surveillance nodes with respect to random surveillance. Accuracy in systems diagnosis
increases when system syndromic signs are the most informative in a way they reveal
linkages between outbreak patterns and network transmission processes.

Conclusions: The model developed is extremely useful for the optimization of
surveillance networks to drastically reduce the burden of food-borne and other
infectious diseases. The model can be the framework of a cyber-technology that
governments and industries can utilize in a real-time manner to avoid catastrophic and
costly health and economic outcomes. Further applications are envisioned for chronic
diseases, socially communicable diseases, biodefense and other detection related
problems at different scales.
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Background
Surveillance and uncertainty

Increased movements of people, and expansion of international trade in food and other
commodities, enhanced by social and environmental changes linked to urbanization, are
all manifestations of the rapidly-changing nature of the world we live in. Such changes
contribute to the rapid adaptation and movement of microorganisms, which has facil-
itated the return of old communicable diseases, the emergence of new ones, and the
evolution of antimicrobial resistance. Food, is in many aspect the “connectome” of most
issues related to infectious diseases and for this motivation experts are now talking about
“emerging foodborne infectious diseases” whose complex dynamics embraces a larger
spectrum of than the one traditionally considered for infectious diseases. The majority of
the pathogens causing the significant foodborne disease burden - estimated as -1.9 mil-
lion people annually at the global level - are now considered to be zoonotic (Schlundt et al.
2004). For this motivation a one-health approach is now embraced (NAS 2012). To put
it more simply, food is in many cases involved in many infectious disease propagations
as the vehicle of pathogen spread in the transmission chain (e.g., environment-animal-
food-humans) leading to infections (e.g. for cholera and tuberculosis) beyond the classical
foodborne illnesses where there is no human-human transmission. As for foodborne dis-
eases, in USA result in 37.2 million illnesses, 228,744 hospitalizations, and 2,612 deaths
each year (Batz et al. 2011; Hanson et al. 2012; NAS 2012; Scallan et al. 2011a, 2011b).
Foodborne illnesses can be caused by a variety of microbial pathogens, chemicals, and
parasites that contaminate food at different points in the food production and prepara-
tion process. Although most of these diarrheal deaths occur in poor countries, foodborne
diseases are neither limited to developing countries nor to children. In general, infec-
tious diseases other than foodborne are a huge problem also for creating susceptibility
to chronic diseases. Because of the necessity to decrease such burden, surveillance is the
primary public health strategy to emphasize, but a set of questions arise spontaneously.

What is the optimal set of surveillance nodes that best inform about the spread of an
epidemic accurately? Is it possible to gauge the shape of transmission networks based
on epidemic outbreaks? The accuracy in such estimations is a function of the source of
information reliability. This means that a node, or a set of nodes performing surveillance,
can report or not report whether a case of an infectious disease case is observed. Such
information tremendously affects the estimation of outbreak path and sources. Thus, the
functioning of surveillance networks is crucial for early detection and rapid response of
epidemics which is possibly the only way to respond to emerging/re-emerging infectious
diseases for which we are unprepared (Stachenko 2008). The function of surveillance net-
works is the ability to observe epidemic information (outbreak occurrence) moving along
the mobility network. Therefore, the design of surveillance networks via the maximiza-
tion of reporting accuracy (i.e., the accuracy in surveillance function) is a key process for
saving lives of human and animal populations (Helbing et al. 2014). Economical and envi-
ronmental outcomes are also associated to such optimal design: for instance industries
and government costs related to commodity recalls and health care, and footprints on the
environment related to pathogen and/or chemical spills can be highly reduced. To face
such interconnected problems systemic risk approaches are welcome in order to design
globally resilient systems (Haldane and May 2011; Helbing 2013; Helbing et al. 2014; Park
et al. 2012).



Convertino et al. Complex Adaptive Systems Modeling 2014, 2:6 Page 3 of 22
http://www.casmodeling.com/content/2/1/6

For surveillance design, the schematization of surveillance as a network is very conve-
nient and realistic (Figure 1). Nodes are sites where information about cases is observed
and reported and these nodes may share information in real-time. The network scheme
is related to the simplification of the system into a physical structure (the network) that is
much simpler and controllable than the whole “3D domain” that is unnecessary to simu-
late. The mathematical problem of network search is easier than the one in which nodes
are considered as separate nodes. The realism of the network scheme is related to the
fact that surveillance - that is a network function - is occurring on a subset of the trans-
mission network. Yet, surveillance and transmission networks are multiplex networks
(Estrada and Gómez-Gardeñes 2014; Newman 2003) in which information and pathogens
are spreading, respectively. The backbone of such networks are mobility networks of
people (e.g., subway, train, airline networks, etc), food (e.g., supply chains), wild animals
(e.g., migration routes), and environmental vehicle networks (e.g., watercourses and urban
drainage networks) that connect portions of ecosystems and countries worldwide by con-
tributing to the spread of infectious diseases (den Broeck et al. 2011; Goncalves et al. 2013;
Knobler et al. 2006; On Effectiveness of National Biosurveillance Systems: BioWatch C,
the Public Health System NRC 2011; Pastore Y Piontti et al. 2014). Thus, it is important
to implement optimal surveillance on mobility networks (that can be transmission net-
works when a pathogen spread) via personnel and/or sensors whose reported information
can be integrated into a cyber-infrastructure that supports public health authorities and
industries.

The consideration of deep uncertainty in reported outbreaks is a very rarely addressed
topic in epidemiology. Recently large attention has been placed on detecting outbreak
sources (Convertino and Hedberg 2014a; Convertino and Hedberg 2014b; Pinto et al.
2012). However, in these studies uncertainty was neglected in reported outbreaks.
Convertino and Hedberg (Convertino M, Hedberg C: Multisite outbreak detection: how
many foodborne outbreak are attributable to farmerõs markets?, submitted) considered

outbreak network

outbreak source
observer

transmission network

surveillance network 

Figure 1 Schematic framework of the network based surveillance system. The reporting and
non-reporting vertices are indicated with o and v, respectively. s∗ is the outbreak source. Note that not all
nodes in the surveillance network need to have reporting ability. t is the traveling time of the outbreak
among nodes. The ideal situation is to have an anticipation of epidemic arrivals for rapid response to the
epidemic rather than absent or late reporting of epidemic arrivals that translates into a certain, possibly high
magnitude outbreaks. The underlying template network is taken from (Pinto et al. 2012).
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large variability in food trade network factors to capture the deep uncertainty related to
attribution of foodborne outbreaks to different local food establishments (versus food
imported globally), with particular focus on farmers’ markets. While this approach con-
sidered deep uncertainty, reported outbreaks were considered as “perfect information”.
Other studies, such as (Pinto et al. 2012) considered random and non-random place-
ment of surveillance observers which partially captures reporting uncertainty; nonethe-
less these studies did not formulate any optimization algorithm maximizing detection
accuracy even in presence of uncertainty.

Moreover, outbreak uncertainty is certainly biased, thus (Pinto et al. 2012)’s and others’
approaches, based on regular schemes of surveillance underestimated such bias related
to the anisotropic spreading of epidemics. In addition to such considerations, (Pinto et al.
2012)’s approach considered the problem of surveillance and outbreak source detection
as coupled problems. In this study and in (Convertino and Hedberg 2014a) it is shown
that such problem can be mathematically decoupled and the optimization of surveil-
lance implies the optimal detection of outbreak sources but not vice versa. Pinto et al.
(2012)’s model, analogous to the method used by telecommunication towers to pinpoint
cell phone users, focused on arrival times of outbreaks - thought as information arrivals -
that are correctly reproduced by the correct definition of outbreak sources. Here, we pro-
pose a simpler model, based on the original idea of (Brockmann and Helbing 2013) and
subsequently developed by (Convertino and Hedberg 2014a; Convertino and Hedberg
2014b; (Convertino M, Hedberg C: Multisite outbreak detection: how many foodborne
outbreak are attributable to farmerõs markets?, submitted)) and (Manitz et al. 2014), that
considers the minimization of the error in the distance from real outbreak multi-sources
with the most informative surveillance networks. All explored surveillance networks
correspond to different reported outbreak patterns. Other approaches for designing
surveillance have been developed in the past; for instance (Bajardi et al. 2012) developed
a model for robust outbreak cluster detection based on network features. While such
model has an optimization component, deep uncertainty in outbreak reporting (that is
uncertainty related to report cases at a selected site and time) is not considered and the
detection of clusters do not detect outbreak sources. The optimal surveillance network
maximizes outbreak information, or equivalently minimizes the uncertainty related to the
average distance between real and predicted outbreak sources.

As a side note we want to emphasize that outbreak sources are oftentimes confused
with “onset areas” which are areas where first cases occur. Those areas are not neces-
sarily where the first contamination of the environment and/or human infection occur
considering environmental and social determinants that contribute to the spread of the
pathogen in space. However, considering the typical short range of dispersal of most
pathogens (Mundt et al. 2009), onset areas tend to coincide with outbreak sources. In
some cases one of the onsets is the outbreak source and all other onsets are generated
by epidemic propagation. For other outbreaks in which vehicle or vector (e.g, wild birds,
food, and people via airplanes) of pathogens travel for long distances the proposed model
works well because of the large resolution at which outbreaks are investigated and because
of the uniqueness of the outbreak source. We argue that the algorithm of (Pinto et al. 2012)
is more likely to fail in detecting real outbreak sources because it does not consider uncer-
tainty in reported outbreaks, thus the implemented matching function of the observed
delay in reported information detects onset areas. Certainly, the definition of outbreak
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sources is always dependent on the spatial and temporal scale of the system considered
and care has to be placed when planning control strategies based on supposed outbreak
sources.

Proposed approach

The model here proposed is explicitly based on a multiobjective optimization in which
the value of information of reporting nodes is maximized. This maximization determines
a minimization of the uncertainty related to the detection of the correct outbreak source.
In order to test the model independently of the epidemiological dynamics determined by
the interplay of socio-environmental and biological factors, we consider three well-known
epidemics with different geographic range, pathogen features, and transmission routes.
In this way we focus on macro-linkages between patterns and process on networks that
allows us to maximize detection via an optimally design surveillance. Figure 2 shows the
major steps of the proposed algorithm. Specifically, the novelties of the integrated model
are the following.

• Global Sensitivity and Uncertainty Analyses (GSUA) (Convertino et al. 2014a;
(Convertino M, S L, M A, Morris S: Importance, Interaction, and Scale-dependence
of Cholera Outbreak Drivers: Metamodeling Predictions, submitted); Saltelli et al.
2008) as a method for evaluating the systemic uncertainty in reported outbreaks for
the determination of outbreak sources, importance and interaction of transmission
network variables. GSUA fully attributes uncertainty to any input factor of the model
via probability distributions, and such uncertainty is propagated to study how it

Surveillance
Network Generation

Traceback Model

Optimal
Surveillance Network

(max VoI)

PORTFOLIO DECISION MODEL

Obseved
Outbreaks/OS

Predicted
Outbreaks/OS

GSUA SIR-Mobility Model

BIOPHYSICAL MODELS

Transmission Network

Figure 2 Integrated modeling framework. Transmission networks are identified and used in a coupled
epidemiological-mobility model (where mobility can be of people, vehicles and vectors), the traceback
model, and global sensitivity and uncertainty analyses model. These are models related to the physics of the
problem. A portfolio decision model considers all potential surveillance network topologies and detects the
one that maximize the VoI calculated based on the comparison of all predicted outbreaks and observed ones.
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affects the uncertainty of the output that is the effective distance from observed
outbreak sources (Brockmann and Helbing 2013).

• Value of Information (VoI) portfolio model (Convertino and Valverde 2013;
Convertino et al. 2014c, 2014d; Trainor-Guitton et al. 2012) with Pareto
optimization for the design of optimal surveillance networks by selecting
observers in network topologies with the highest information for detecting outbreak
sources.

• Network based (Brockmann and Helbing 2013; Convertino and Hedberg 2014a;
Newman 2003) versus random node surveillance design, and effective distance based
prediction of outbreak spread with source detection. The effective distance
implementation (Brockmann and Helbing 2013) does require only the knowledge of
outbreak occurrence versus the number of cases.

Materials
Case-study outbreaks

The choice about outbreaks considered in this study is related to the objective of capturing
the salient links between epidemic patterns and processes regardless of disease etiology
that is a result of peculiar epidemiological dynamics in terms of socio-environmental
drivers, velocity, and geographical coverage (Convertino et al. 2009). This is with the
aim of a general theory and cyber-infrastructure development for automated surveillance
(Convertino and Hedberg 2014a). The goal is to show how observed outbreak patterns
can be analyzed with the same physical-based models to detect outbreak sources and
design surveillance networks considering the underlying transmission networks; thus,
linking structure and functions of networks (Newman 2003) related to “invisible” out-
break dynamics over space and time. We chose among the fastest and high incidence rate
epidemics: the 2004-2007 H5N1 pandemic (Kilpatrick et al. 2006), the 2010 cholera epi-
demic in Cameroon ((Convertino M, S L, M A, Morris S: Importance, Interaction, and
Scale-dependence of Cholera Outbreak Drivers: Metamodeling Predictions, submitted);
Guevart et al. 2006; Njoh 2010; Tatah et al. 2012), and the 2012 Salmonella epidemic
in USA due to contaminated tuna (GATS 2014a). 34%, 27%, and 12% is the incidence
rate for H5N1, cholera, and Salmonella, respectively. The estimated traveling velocity of
these epidemics is 11, 22, and 122 km/month, respectively. The velocity is estimated using
epidemic arrival times and distance covered over time. Additional file 1 report more infor-
mation about the outbreak considered, and Figure 3 shows the observed outbreak patterns
and transmission networks.

Mobility and surveillance networks

Mobility networks are the backbone of both transmission and surveillance networks that
are both subnetworks of the mobility network. Mobility networks can be related to the
mobility of vehicles, vectors, or pathogens themselves. For salmonella in tuna and H5N1
in humans we consider the food and human mobility network that are the primary net-
works responsible for the transmission of the pathogen. For cholera, previous studies
such as (Pinto et al. 2012), have considered only the river network; however, considering
the higher importance of human mobility in the transmission of cholera infections here
we take into account human mobility and water-flow networks, simultaneously. How-
ever, only one network is enough for detecting outbreak sources. Surveillance networks
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Figure 3 Epidemic considered for the validation of the surveillance system design algorithm. The top
plots show the emerged predicted outbreak patterns determined by epidemic invasion fronts driven by food
and human mobility in which food and people acted as a vehicles and vectors of transmission respectively.
As for cholera (data from (Convertino M, S L, M A, Morris S: Importance, Interaction, and Scale-dependence of
Cholera Outbreak Drivers: Metamodeling Predictions, submitted)) and H5N1 (WHO data), water and birds are
also vehicle and vector, respectively, contributing to the spreading of the pathogen. Salmonella epidemic
data are from CDC. Here, both water networks and bird mobility are neglected since the search is focused on
human-manageable network on which perform surveillance. The bottom plots are the transmission
networks of the epidemics considered. For cholera, transmission networks are based on (Convertino M, S L, M
A, Morris S: Importance, Interaction, and Scale-dependence of Cholera Outbreak Drivers: Metamodeling
Predictions, submitted). The food network is built using the radiation model (Convertino and Hedberg 2014a;
Simini et al. 2012) and the human mobility network is based on airline data (www.oag.com).

can be though to coincide with human mobility networks rather than with environmental
networks unless sensors are placed along those.

Human and food mobility network fluxes are estimated using the radiation model of
(Simini et al. 2012) (Additional file 1) that is based on the population distribution. The
population dataset is from the Web sites of the Gridded Population of the World and the
Global Urban-Rural Mapping projects (CIESIN 2014; GRUMP 2014), which are run by the
Socioeconomic Data and Application Center (SEDAC) of Columbia University. Accord-
ing to this dataset, the surface of the world is divided into a grid of cells that can have
different resolution levels. Each of these cells has been assigned an estimated population
value. Out of the possible resolutions, we have opted for cells of 15 × 15 minutes of arc to
constitute the basis of our model. This corresponds to an area of each cell approximately
equivalent to an area of 25 × 25 km2 along the Equator. The dataset comprises 823,680
cells, of which 250,206 are populated. Since the coordinates of each cell and those of the
airports in the World Airport Network are known, the distance between the cells and the
airports can be calculated.

For the H5N1 we consider only the estimated mobility for the World Airport Network
(WAN) (Colizza et al. 2006; den Broeck et al. 2011). WAN is composed of 3362 com-
mercial airports indexed by the International Air Transport Association (IATA) that are
located in 220 different countries. The database contains the number of available seats
per year for each direct connection between two of these airports. The coverage of the
dataset is estimated to be 99% of the global commercial traffic. The WAN can be seen as

www.oag.com
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a weighted graph comprising 16,846 edges whose weight, represents the passenger flow
between airports. The network shows a high degree of heterogeneity both in the number
of destinations per airport and in the number of passengers per connection.

The International Agro-Food Trade Network (IFTN) (Convertino and Liang 2014;
Ercsey-Ravasz et al. 2012) for the USA is built using data of (ComTrade 2014) for the
worldwide linkages among countries, and data from the United States Department of
Agriculture, Foreign Agricultural Service’s Global Agricultural Trade System (GATS)
(FAS 2014; GATS 2014b) for the trade network of imported food commodities in USA.
Additional data is used from the Agricultural Marketing Service (AMS 2014). The use
of both datasets for food allows one to cross check erroneous data and to complement
missing data missing. Data of imported and produced food that is locally consumed is
obtained from FAOSTAT food balance sheets (FAOSTAT 2014). Such information is use-
ful for calibrating the model factor that determines how many individuals consume the
contaminated food.

Methods
The integrated modeling used in this paper consists in the following main sequential
steps.

1. Generation of potential surveillance networks within network topologies;
2. Model-based detection of onset/outbreak sources with uncertainty assigned to the

reported outbreaks for all feasible surveillance networks from (1); the
determination of outbreak sources is performed by minimizing the uncertainty in
the effective distance estimations; and,

3. Determination of the most informative surveillance network by maximizing the
VoI considering all combinations of feasible surveillance networks corresponding
to potential reporting patterns.

Effective distance and traceback model

The model is based on the optimal inference of epidemiological factors that better
explain the spatio-temporal occurrence of foodborne outbreaks for any potential out-
break location to which different food trade paths correspond. In this study, differently
from (Convertino and Hedberg 2014a), Manitz et al. (2014), and (Brockmann and
Helbing 2013), deep uncertainty in reported outbreaks is introduced. The possible out-
break sources are determined by perturbing the reported outbreaks considering different
surveillance networks. All feasible outbreak sources are tested considering their likeli-
hood to satisfy the relationship between outbreak arrival times and velocity at any time
step of the epidemic and for all infected communities simultaneously.

We define the effective distance (Brockmann and Helbing 2013) of directly connected
nodes as a function of the most probable food trajectories defined by the radiation model
(Section S2.1 in Additional file 1) that can be derived from the connectivity matrix P that
specifies which nodes are connected; specifically dmn = 1 − logPmn where for any couple
m−n there are multiple distances (Brockmann and Helbing 2013). For any candidate out-
break source we use the definition of “shortest path” effective distance Dmn (Brockmann
and Helbing 2013) from an arbitrary reference node n to another node m in the net-
work (not necessarily directed connected) as the length of the shortest path from n to m,
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Dmn = min�λ(�), where λ(�) is the directed length of an ordered path � = n1, . . . , nL as
the sum of effective lengths along the path Brockmann and Helbing (2013). The average
shortest path tree is calculated among all effective distances that are associated to poten-
tial candidate outbreak sources. Thus, both average effective distance (dmn) and average
shortest path tree (that is the shortest path among many effective distances) responsible
of outbreak spreading (Dmn) depend only on the static mobility matrix weighted by the
food fluxes. There is a family of effective distances and there one of shortest path distances
between community m and n. Theoretically, there can be more than one shortest path
distance but the dimension of the ensemble of shortest path distances is always smaller
(or equal) than the ensemble of effective distances.

The above topological considerations allow us to say that, on a spatial scale described by
the metacommunity model, the complexity of spatio-temporal outbreak patterns is largely
determined by the structure of the mobility network (in this case of food and people
movement) and not by the nonlinearities of the pathogen/-food/-people couples and epi-
demiological factors. According to the second Newtons law the arrival time of outbreaks
is defined as

Ta = De(P)/ve(α, R0, γ , ε) . (1)

This equation states that effective outbreak distances De can be computed with high
fidelity based on outbreak arrival times on and effective spreading speed ve, and that each
factor depends on different factors of the dynamical system considered (Brockmann and
Helbing 2013). Note that here we indicate De as Dmn previously defined. The epidemiolog-
ical factors associated with the classical SIR model determine the effective speed, whereas
effective distance depends only on the topological features of the static underlying net-
work, i.e., the matrix P. Because, Ta and ve are know and estimated from data (that can
be generated in real-time), respectively, it is easy to estimate De of an outbreak consider-
ing also the uncertainty in epidemiological dynamics and food trade network. Thus, Eq. 1
can be used as a test of hypotheses where hypotheses are about all candidate outbreak
sources responsible for the observed outbreak patterns. The most likely geographical dis-
tance can be assessed after determining the effective distance and considering all potential
food trade paths. The SIR dynamics (Section “Epidemiological dynamics and information
preading: predictive metacommunity model”) is calibrated on the range of the outbreak
velocity and arrival times, and is simulated by maximizing the prediction accuracy of the
observed outbreak patterns in terms of cumulative outbreaks. Such accuracy is maxi-
mized when the uncertainty about the effective distance from the real outbreak source is
minimized, that determines the maximization of the concentricity of outbreak spreading
waves (Section “Outbreak detection: linking patterns and processes”). The concentricity is
maximized only when the accuracy in the reported outbreaks is maximized that is equiv-
alent to the maximum of the value of information (Section “Value of information and
Pareto optimization”) considering any uncertainty source in outbreak patterns, supply
chain and disease dynamics (Section “Global sensitivity and uncertainty analyses”).

Epidemiological dynamics and information spreading: predictive metacommunity model

The metacommunity model is inspired by the metacommunity concept in (Convertino
2011; Convertino et al. 2009) and (Convertino M, S L, M A, Morris S: Importance, Inter-
action, and Scale-dependence of Cholera Outbreak Drivers: Metamodeling Predictions,
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submitted) and the mathematics in (Brockmann and Helbing 2013) and more recently
in (Convertino and Hedberg 2014a). The metacommunity is an ensemble of metapop-
ulations (not only individuals) that can be divided into different categories. The model
consists in the coupling of a classical susceptible-infected-recovered (SIR) dynamic model
with a radiation model (Simini et al. 2012) of food/human mobility that determines the
interlinked variations of food/human mobility and population states for all communi-
ties of the system considered simultaneously. The infection of individuals occurs only via
food-human and/or human-human interactions that define the infectious contact matrix.
In general, the model is a reaction-diffusion transport model of information spreading
with embedded bias transport in relation of the radiation model of mobility. The informa-
tion is about the occurrence of a case related to the epidemic considered; yet, information
can be a binary variable in which “1” stands for the occurrence of an case in a loca-
tion within the system. Uncertainty in reporting means to have some areas that report
the outbreak or not. Thus, such uncertainty affects the ability to reproduce correctly
the observed outbreak pattern and to detect the correct outbreak source. The metacom-
munity model, whose mathematics is written as in (Brockmann and Helbing 2013), is

δt jn = αsnjnσ(jn/ε) − βjn + γ
∑

m �=n Pmn(jm − jn)

δtsn = −αsnjnσ(jn/ε) + γ
∑

m �=n Pmn(sm − sn) ,
(2)

where sn = Sn/Nn, jn = In/Nn, and rn = 1snjn. R0 = α/β that is the ratio of mean infec-
tion and recovery rate. A detailed derivation of such equations is provided in (Brockmann
and Helbing 2013). The mobility parameter γ is the average food/human mobility rate
estimated in the data (Section “Mobility and surveillance networks”), i.e. γ = 
/�,
where � = ∑

n Nn is the total population in the system and 
 = ∑
n,m Fnm is the total

food/human flux. This yields numerical values in the range γ = 0.01150.0379 day−1. The
matrix P with 0 ≤ Pmn ≤ 1 quantifies the fraction of the food/human flux with desti-
nation m exported from node n, i.e., Pmn = Fmn/Fn, where Fn = ∑

m Fmn (Brockmann
and Helbing 2013). The sigmoid function σ(x) = xn/(1 + xn) with gain parameter
η � 0 accounts for the local invasion threshold ε and fluctuation effects for jn < ε

(Brockmann and Helbing 2013). Typical ε and η average values are η = 4, 8, 10, 12, . . . , ∞
and -log10ε = 4, 6, 8, . . .. For human-driven contagions ε is related to the number of
infected people that travel within the system. For food ε depends on how many indi-
viduals eat the contaminated food. Here to avoid the use of two factors, one for local
consumption and another for consumption of contaminated food, we use ε as the only
factor determining spread of contamination. This means that we just consider the portion
of consumed food that is contaminated. The fraction of produced and imported food that
is locally consumed is assessed from (FAOSTAT 2014). In general, it is possible to assume
that consumption is proportional to the size of the population of each community. This
is one of the motivations for which the radiation model works well in reproducing food
trade patterns (Section “Mobility and surveillance networks”) (Brockmann and Helbing
2013). Considering any effective path as a linear system - discretized at regular intervals l
along the transmission network - the set of Equations 2 can be rewritten as

δt jn = αsnjnσ(jn/ε) − βjn + Dδ2
� jn

δtsn = −αsnjnσ(jn/ε) + Dδ2
�sn ,

(3)
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where D = l2γ is the diffusion coefficient that is related to a classic form of a Fisher
equation which has been deployed in mathematical epidemiology for describing wave
spreading in reaction-diffusion system such as for epidemics (Belik et al. 2011; Campos
and Mendez 2005). Note that sn = sn(ŝ(O), t) and jn = jn(ŝ(O), t) where (ŝ(O), t) is the
surveillance network in Equation 4.

For sufficiently localized initial conditions this systems exhibits traveling waves with
speed c = 2

√
αD(1 − β/α) ∼ √

γ (Belik et al. 2011). Such velocity can consider bias
transport as in (Bertuzzo et al. 2007) in case the bias is known and elevated in the trans-
port process. The telegraph model introduced by (Holmes et al. 1993) and simulated by
(Bertuzzo et al. 2007) for cholera possesses both diffusion and wave motions. The Fisher
equation of diffusion works well when using the effective distance, while the telegraph
model equation works well when using the geographical distance of the transmission net-
work. GSUA is used here to consider uncertainty in the traceback model and to assess
the relative importance and interactions of factors - epidemiological and mobility net-
work factors (Section “Epidemiological dynamics and information spreading: predictive
metacommunity model” and Additional file 1: Section S2.1, respectively) - leading to out-
breaks. Interactions of causal factors are typically neglected as well as the determination
of the causality of such factors. The traceback model is run multiple times according to
the Sobol scheme (Additional file 1: Section S1.2) (Figure 2) sampling all model factors
along their probability distributions (Additional file 1: Figure S4) estimated from data or
assumed as uniform according to a maximum entropy principle (Convertino et al. 2014a).

Outbreak detection: linking patterns and processes

The simplest method to determine which food and which outbreak source are the most
likely to determine the observed outbreak patterns is to test which feasible candidate
source has the lowest variability in terms of mean and variance assessed from Eq. 1. This
is essentially a portfolio problem (Convertino and Valverde 2013) in which a large set of
outbreak source alternatives exist and the whole set is evaluated considering average risk
and variance, where in this case the “risk” is related to the inability to predict the cor-
rect outbreak patterns in space and time. Thus, for each potential candidate outbreak
location the model computes the effective distance to the subset of nodes in which an
outbreak is observed. This is done for any time step of the epidemic. On the basis of this
set of effective distances (denoted by different outbreak sources), we compute the mean
μ(De) and standard deviation σ(De) of the effective distance. As shown by (Brockmann
and Helbing 2013), concentricity of epidemic waves increases with a combined mini-
mization of mean and standard deviation of the estimated effective distance. In other
words, such approach minimizes the deviation from the expected relationship arrival
times-distance, or velocity-distance, equivalently. Here we perform a minimization of the
sum

√
μ(De)2 + σ(De)2 as in a portfolio model where the objective function is the

Euclidian distance built with the variables to minimize (Convertino and Valverde 2013).
The correct outbreak source is the one that satisfies the minimum of the aforementioned
sum for the whole epidemic duration. It is possible to visualize the dynamics of epidemic
spread and concentricity of outbreak waves by plotting outbreak sources at the center of
a network where all other nodes are placed around the central node at a radial distance
equal to the effective distance. Correct outbreak sources determine cohesively evolving
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outbreak waves from the center to the nodes at the boundary from the beginning to the
end of the epidemic.

Value of information and Pareto optimization

The Value of Information (VoI) is classically defined as the amount a decision maker
would be willing to pay for information prior to making a decision (Convertino et al.
2014c; Keisler 2004). In our case we consider the set of observers ŝ(O) as the economi-
cally and epidemiologically valuable features on which stakeholders may take a decision.
In the real world such decision may be related to early control strategies of the epi-
demic that have economic and health repercussions. In order to calculate the VoI, or the
“value of spatial information” more precisely because ŝ(O) is a spatially explicit variable
(Trainor-Guitton et al. 2012), we assess uncertainty reduction in the detection of out-
break sources when extra knowledge about outbreaks is available. The coverage of the
surveillance network determines where we have information about cases. Thus, that is
a macroscale uncertainty whose magnitude can be high or low, and there is an optimal
coverage determined by the optimal surveillance network the proposed model aims to
determine. The uncertainty in case reporting is assessed as distance d(ŝ(O)) from the out-
break source (Eq. 1 and Section “Outbreak detection: linking patterns and processes”),
that is related to the variability in the reported cases expressed by the function of cumu-
lated cases C(t) over the epidemic. Note that in general, d can be both effective and
geographical distance. The evaluation of the VoI is done by comparing the uncertainty
before and after “pinching” the input, i.e., replacing it with another input (of different
value) and a lower degree of uncertainty, or with no uncertainty (Oakley 2009). The for-
mer scenario is when a set of monitored communities is considered for any network
topology (random, high degree, and maxVoI), and the latter is when all the monitoring
communities that are reporting cases are considered. In this case study we consider such
scenarios with complete presence (as reported) or absence of reported cases in USA for
all states involved. The VoI in the latter scenario is commonly known as ”value of perfect
information” that is assumed in this study equal to the information gathered from all data.
By considering the above reasoning and ŝ(O) with its probability structure in space and
time, the VoI is defined as:

VoI(t)i,n = [
d(ŝ(O), t)i,n=1 − d(ŝ(O), t)i,n=M

] ∝ [
Ci,n=1(t) − Ci,n=M(t)

]
, (4)

where C(t) and d(ŝ(O), t) is evaluated for all possible networks n (among all topologies
(Additional file 1: Figure S1)), communities i, and time steps t; M is the total number
of considered networks. ∝ stands for “proportional to”. Hence, the VoI is the difference
of d(ŝ(O)) estimated for different networks and all communities of the system. The VoI
(Eq. 4) can be theoretically defined by the difference between two estimates of d(ŝ(O))

for different surveillance networks (Eq. 4) (i.e. a different set of observer nodes). VoI is
always taken equal or greater than zero and a rational decision maker always chooses
more valuable information. Note that here we do not consider any cost function in the
VoI because no information is available; however, that information is easily included as
function detracted to the predictive benefits in Eq. 4. In presence of a physical-based
model reproducing outbreaks in space and time the VoI can also be measured as accuracy
in predicting prevalence patterns. In fact, errors in detecting outbreak sources translate
into errors in initial conditions of the model that reduce model predictive accuracy. Such
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predictions generated by models that take in input surveillance data are used for public
health decision making and system design.

Global sensitivity and uncertainty analyses

GSUA involves five steps: (1) the probability distribution functions (pdfs) for each input
factor are selected (epidemiological, mobility, and network topology factors); (2) sam-
ple points are generated on the input factor distributions using the Sobol method; (3)
multiple model execution using each of the sample points and a set of outputs is gener-
ated; (4) global sensitivity analysis is performed (i.e., assessment of factor interaction and
importance); and, (5) the important input factors are selected. Probability distributions of
mobility network factors (link length and clustering coefficient) are derived from data as
in (Convertino M, S L, M A, Morris S: Importance, Interaction, and Scale-dependence of
Cholera Outbreak Drivers: Metamodeling Predictions, submitted). Epidemiological fac-
tors (α, and β) and contamination factors (σ an ε) are assumed to be normally distributed
within a normalized range [0,1]. γ is related to the range of variability of the total food and
human mobility flux. As for human mobility, more than 60 million people travel billions of
miles on more than 2 million international flights each week. GSUA is extremely impor-
tant in complex systems that are dominated by factor interactions rather than an additive
contribution of each single factor. In fact, classical sensitivity analysis fails to account for
factor interactions and does not offer a full probabilistic investigation of system states; yet,
classical one factor sensitivity analysis provides misleading conclusions. GSUA is rarely
performed and classical one-factor at a time sensitivity approaches are used to evaluated
uncertainty. GSUA first assign uncertainty and that drives sensitivity analysis via variabil-
ity of model output that accounts for non-linearity among model input factors and those
and model output. The Sobol method (Sobol 1993, 2001) is a variance-based method that
performs a quantitative analysis of model sensitivity based on the principle of variance
decomposition. According to this principle, the full variance of the model output is given
by the sum of the variances of all input factors (Saltelli et al. 2008). The Sobol method has
the capacity to quantify the influence of the full range of variation of each input factor as
well as the interaction effects among the input factors on the model output (Saltelli et al.
2008). The Sobol method estimates sensitivity measures which summarize the models
behavior. The most common measure of sensitivity is the first-order sensitivity index, Si,
that represents the main effect (direct contribution) of each input factor to the variance
of the output. It is expressed as Si = Vi/V where Vi is the part of the variance due to the
input factor Xi, and V is the total variance of the model output. Another measure of sen-
sitivity is the total factor sensitivity that includes the interactions. The total effect index,
STi , that is the result of the variance decomposition, accounts for the total contribution
to the output variation due to factor Xi, i.e., its first-order effect plus all the higher order
effects due to interactions (Saltelli et al. 2008). Thus, the total effect index of factor Xi can
be expressed as STi = Si +Si,i+1 +Si,i+1,i+2 +Si,i+1,i+2,i+3 +Si,i+1,i+2,i+3+...+NIF = Si +SIi ,
where NIF is the number of input factors and SIi is the sum of all the interaction indexes.
The Sobol pairwise interaction between factors can be calculated and we identify this
with the notation SIij where i and j are the factors that are considered. As an example,
in the case of three input factors ST1 is the total sensitivity index of X1, S1 is the main
effect of X1, SI12 is the interaction effect between X1 and X2, and SI123 is the interaction
effect between X1, X2, and X3. Considering the previous expression, ST1 − S1 provides a
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measure of how much X1 is involved in interactions with all other input factors (Saltelli
et al. 2008). The sum of all Si is equal to one for additive models and less than one for
non-additive models. The difference 1 − Si can be used as an indicator of the presence of
interactions in the model and we indicate that as SI . The number of simulations required
for the Sobol method for a two-index analysis (i.e., for first order and total indices) is given
as N = M(2k + 2) where M is the sample size of each index (typically taken between
500-1000) and k is the number of uncertain input factors after the Morris screening. In
this study because k = 7, and we take M = 600 we have 9,600 Sobol simulations. Since
the Sobol method uses a pseudo-randomized multivariate sampling procedure, it can be
used as a basis for a global uncertainty evaluation by constructing the pdfs and cumulative
distribution functions for each of the selected outputs.

Results and discussion
The results of the study hold when surveillance works for any network topology. Here
surveillance is seen as a function of the network to contrast the spreading of infectious
diseases. The random surveillance design model, i.e. placing reporting nodes of out-
breaks randomly along the transmission network produces errors in the distance from
the real outbreak sources as shown Figure 4 for the 2010 cholera outbreak in Cameroon.
Table 1 shows the surveillance node coverage necessary for achieving an outbreak source
detection higher than 90% also for other surveillance network models. The higher the
percentage the higher is mismatch between the surveillance network model and the epi-
demic transmission process. For instance, for cholera 20% of random node coverage is
sufficient for detecting precisely the outbreak source - possibly because of the extended
human mobility and outbreaks - but for other highly heterogeneous epidemics such as
H5N1 the percentage increase to almost 50%. For cholera, with a reporting node coverage
of 20% the error is 2 hops (i.e., about 4.4. km) (Figure 4). With higher percentage of node
coverage, from 40 to 80 %, the error is more or less invariant to 2 km that is a very small
error considering the extension of the Far North Region of Cameroon (∼ 241 km long
and 145 km wide). For N0/N = 100% the error goes to zero and there is almost perfect
detection of the three main outbreak sources.

By selecting as surveillance nodes only the nodes with the highest degree, where the
node degree is defined as the the number of connections, the coverage required for
achieving the same detection accuracy (90%) is lower than for the random coverage. 5, 13
and 38% are the percentages required for cholera, Salmonella, and H5N1 (Table 1). The
results are quite invariant considering different thresholds - from 5 to 10 - for establish-
ing “high degree” nodes. We believe that the high degree surveillance scheme captures

Table 1 Surveillance node coverage for achieving an outbreak source detection higher
than 90%

Observers

Outbreak (Network) Random High degree maxVoI

Cholera Cameroon 2010 (Tree) 20% 5% 3%

Salmonella USA 2012 (Tree) 37% 13% 5%

H5N1 2007 (Graph) 46% 38% 20%

Number are the percentage (No/N × 100) of observers necessary to achieve a probability of localization of outbreak sources
equal to 90%. Such percentage is for the random, high degree, and maxVoI surveillance network topology irrespectively of
the outbreak type. The maxVoI algorithm is the one used for all potential surveillance network topologies.
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(B) (C)(A)

Figure 4 Cholera outbreak sources and error in detecting outbreak sources for random reporting
node placement. (A) River networks and cumulated outbreak pattern of cholera in 2010 in the Cameroon
Far North region. (B) Road connectivity influencing people mobility; in this case we use the radiation model
for estimating mobility fluxes for consistency with the other epidemic considered. (C) No/N × 100 is the
percentage of randomly placed nodes for the cholera epidemic. The frequency distributions are about the
“hop” that is the error distance from the detected to the real outbreak sources. The map is showing the
detected sources (red dots) for No/N × 100 = 20%. For the cholera case 1 hop = 2.2 km.

better outbreak evolutions than other schemes because epidemics are very likely to pass
through the most connected nodes. However, selecting only these nodes is not enough
since many infections pass thought other nodes. The maxVoI model (Eq. 4) determines a
drastic reduction in the number of surveillance nodes required to detect outbreak sources
with an accuracy higher than 90%. 3, 5 and 20% are the percentages of nodes required
for cholera, Salmonella, and H5N1 (Table 1). Such percentages correspond to errors

Figure 5 Error in detecting outbreak sources for value of information based and random surveillance
design schemes. The frequency distributions are about the “hop” that is the error distance from the
detected to the real outbreak sources. Results for random and maxVoI models are shown. The maxVoI is
achieved for small-world surveillance networks.
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of 0.5×2.2 km, 1.0×761 km, and 1.5×2020 km as distances from the correct outbreak
sources (Figure 5). In case of random placement the error in km units is 2.5 ×2.2 km,
3.8×761 km, and 4.6×2020 km. The reduction in surveillance nodes determined by the
maxVoI model is 17%, 32%, and 26% with an average 25% reduction. These differences
creates differences in predictions of outbreak patterns larger than 40% in terms of cumu-
lative cases. The magnitude of reduction is significative of the both interlinked epidemic
dynamics and transmission network; more space filling epidemics such as cholera show a
smaller advantage of the maxVoI model than more long-range and less space filling epi-
demics such as Salmonella and H5N1 for which the food/human mobility network does
not covert the whole system.

The ability of the maxVoI model to detect outbreak sources with high accuracy and low
surveillance nodes is related to determination of the most meaningful nodes (in terms of
known information for describing outbreak patterns) via a portfolio model with Pareto
optimization that explores all potential combinations of observers and corresponding
outbreak information. The VoI is maximized, thus the difference between two estimated
distances from the real outbreak sources is maximized. The set of observer nodes for
which the VoI is the maximum allows to predict the real outbreak source and the observed
outbreak pattern.

For the outbreak considered the error in the estimation of the distance, and thus in the
outbreak velocity, determined by the uncertainty of reporting outbreak arrivals is min-
imized by the maximization of the VoI. Such optimization results maximized in terms
of VoI for small-world networks that likely capture both local and large scale outbreak
spreading regardless of epidemiological details. Figure 6 shows that there is clearly an
association between network topology, maximum VoI and error distance regardless of
the epidemic considered. Additional file 1: Figure S2 shows these findings in an alter-
native way by plotting the normalized probability distribution of estimated distances
from outbreak sources and the Integrated Network Resilience (INR) (Halpern et al.
2012; Pandit and Crittenden 2012) (see Additional file 1, Section S2.3, and Additional
file 1: Figure S1) of all surveillance network topologies. Random and regular networks
with medium and high INR, seem limited in maximizing the VoI; yet, with such net-
work it is hard to predict accurately outbreak sources, and the evolution of outbreaks
over space and time. INR, that is manifesting the structural resilience of a network in
terms of reconfiguration ability (see Additional file 1) determines also the ability to
inform about outbreak evolution. Additional file 1: Figure S3 shows the error in epi-
demic spreading velocity as a function of the VoI for all surveillance network topologies.
The variability of the velocity is higher than the distance, nonetheless even the VoI-
velocity error pattern shows a neat dependency of the epidemic dynamics on the network
topology (Additional file 1: Figure S3). Small world networks have the highest VoI, thus
the ability to detect outbreak sources and velocities carefully. Outbreak waves for dif-
ferent time steps of the epidemics considered are estimated with data related to the
maxVoI surveillance model (bottom plot of Additional file 1: Figure S3). Such epidemic
waves are dependent on the surveillance network and their estimation is crucial for
detecting epidemic spreading and outbreak sources rapidly and carefully, respectively.
Ideally, the wish is to have a surveillance system that detects and stops the epidemic
spreading after the first cases that correspond to the first epidemic wave. The celer-
ity of epidemic waves can be derived from Eq. 3 or more simply with Eq. 1 in the
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Figure 6 Value of information, prediction accuracy, and prediction determinants. The upper plot
shows the VoI versus the error distance as a function of the network topology. The bottom plot is after Global
Sensitivity and Uncertainty Analyses (GSUA).

effective distance domain. Wrong estimations of epidemic velocities are for inefficient
outbreak reporting systems during the course of epidemics which makes very difficulty
the detection of outbreak sources, attribution of outbreaks to food and/or infected indi-
viduals, and prediction of outbreak spread. The distance error from outbreak sources is
anisotropic - in the sense that different errors are associated to different paths of the
transmission network - because epidemic spreading is anisotropic in the geographical
space. For this structured anisotropy related to the nonrandom and non regular struc-
ture of the mobility network, we believe that random and regular surveillance network
are suboptimal surveillance networks. Vice versa, small-world surveillance networks such
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as power-law networks capture the small-world features of mobility networks (Bajardi
et al. 2012), thus they are able to monitor outbreak evolution over space and time very
accurately.

Figure 6 also shows the result of GSUA in which uncertainty is considered for SIR and
mobility model input factors. Results show that topological factors of the mobility net-
work, namely the average link length and the clustering coefficient L and C, are the most
important factors in explaining outbreak patterns. The average mobility rate γ and the
invasion threshold ε that defined the number of free-moving contaminated food and/or
individuals are very important and interacting factors after topological factors. Epidemi-
ological transition factors, α and β , are secondary importance and weakly interacting
factors because they are strongly dependent on the aforementioned factors. These results
underlines even more the importance of knowledge and controllability of the network
on which epidemic may occur. Mobility networks define where outbreaks can occur but
also where surveillance should be crucially designed. Because a fully extended surveil-
lance network is likely unfeasible considering also the highly varying mobility network of
food and people, an optimally designed surveillance system via maxVoI is ideal in terms
of benefits and costs.

As for H5N1 the source is correctly identified in Vietnam (Hanoi as the outbreak
source); subsequently the epidemic is predicted to move to Thailand, and within weeks to
spread to ten countries and regions in Asia, including Indonesia, South Korea, Japan and
China. As for the Salmonella outbreak in tuna, the outbreak source is detected in New
York City if only the US food trade is considered, and in Kerala, India, if the whole world-
wide food trade network is taken into account. For the cholera epidemic in Cameroon,
the health districts of Logone (North), Mokolo (West), and Yagoua (South East) are
detected as outbreak sources. Considering the epidemic starting some time before the
peak of cases, the urban health district of Maroua is detected as outbreak source. This
evidences that: (i) the cholera epidemic in Cameroon is very likely generated by infections
in rural areas and urban cases are due to infected people mobility among cities where
human-human transmission is higher (in this case Maroua that is the capital of the Far
North Region); and (ii) the definition of outbreak sources depend on the time horizon
considered. For instance, Maroua is a source only if previous cases are neglected. Equiv-
alent considerations are related to the scale of analysis: outbreak sources are related to
the scale of the system considered. For example, it is known that cholera is endemic in
large Sub-Saharan countries and the migration of populations, in which there are also
infected people, among such countries is very high. For Cameroon, a high migration is
reported from Nigeria in the East and Chad in the North, thus real outbreak sources
may be located outside Cameroon. These considerations highlight the need to be very
careful when planning control strategies that may result very inefficient for decreas-
ing the systemic risk of infection because of the wrong targeting of outbreak source
areas.

We show that efficient surveillance in the human mobility network is sufficient to
detect outbreak source rapidly; this is despite complications played by wild bird migratory
pathways and infected domestic birds for H5N1, and water-driven pathogen mobility for
cholera. The almost immediate detection of outbreak sources has been shown in previ-
ous papers (Brockmann and Helbing 2013; Convertino and Hedberg 2014a). Certainly, in
general it is important to detect which transmission network causes the fastest spreading
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infections and we believe that in our cases, for both cholera an H5N1, the fastest infec-
tions are driven by human-human contacts related to the human mobility network as
shown by epidemiological studies.

Conclusions
The design of optimal surveillance networks allows stakeholders to detect outbreak
sources and paths correctly. Such detection is only possible if information about outbreak
“fingerprints”, i.e reported outbreaks, is accurate and timely. We show that indepen-
dently of system scale and resolution, biological and socio-environmental dynamics
the “unknowns” of epidemiological dynamics - such as epidemic spreading paths and
sources - can be determined considering the same physics principles of reaction-diffusion
processes and information theory. We believe that our results are robust independently
of any other epidemic types, or it can provide the methodological framework to design
epidemic-specific surveillance network. The following results are worth emphasizing.

• The structural resilience of the system is independent of epidemic dynamics and can
be identified by the Integrated Network Resilience that combines two key network
topological factors. Because of the spatio-temporal anisotropy of outbreaks the
small-world network is the surveillance network with the highest value of
information, that implies the most accurate outbreak source detection and outbreak
pattern prediction. Structural resilience is just one component of the system to
respond to outbreaks. A portion of system resilience has to be built considering
training of personnel dedicated to surveillance.

• The knowledge of mobility networks and the value of information of surveillance
networks as subsets of of the former is determinant for early detection and response
of outbreaks. The use of effective distances allow to avoid the need to use topological
features - necessary in the design process - that increase the computational
complexity and uncertainty related to the estimation of the most likely transmission
networks.

• Optimal dynamic design and real time surveillance are tasks that can be achieved
using the proposed model. The design and outbreak source detection can be
performed with a portfolio model with Pareto optimization that selects the most
important observer networks by maximizing the VoI, and detects the most likely
outbreak sources by minimizing the uncertainty in the effective distance from the
real sources. The optimal design implies accuracy detection but not vice versa.
Dynamic surveillance network in which surveillance change configurations, for
instance taking advantage of smart sensors placed along the mobility network, are at
the frontier of technological development and can implement the maxVoI model.

The model can work for other kinds of spreading processes (e.g, viruses in com-
puter networks and biomarker activation in chronic diseases) in which information
spreads on partially known networks, although networks can be back-inferred with a
reverse application of the model where the question is the identification of the networks
(among all candidate ones) that leas to the generation of observed epidemic patterns.
For instance, an important application of the model is related to the determination of
the most effective preparedness information, for example provided by the surveillance
network or other information networks, with the aim to decrease the systemic risk of
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outbreaks in populations. Such information can be organized considering public media
and/or online networks that inform people about performing tasks related to control out-
breaks. Reversely, information networks can also be used as tools to more rapidly inform
surveillance networks about the spread of outbreaks in populations.
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