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Abstract

Purpose: We propose an agent-based model for peer selection in the Internet at the
Autonomous System (AS) level. The proposed model, GENESIS-CBA, is based on realistic
constraints and provider selection mechanism, with ASes acting in a myopic and
decentralized manner to optimize a cost-related fitness function. We introduce a new
peering scheme, Cost-Benefit-Analysis, which, unlike existing peering strategies, gives
ASes the ability to analyze the impact of each peering link on their economic fitness.
Using this analysis, ASes engage in only those peering relations that can have a positive
impact on their fitness.

Methods: Our proposed model captures the key factors that affect network formation
dynamics: highly skewed traffic matrix, policy-based routing, geographic co-location
constraints, and the costs of transit/peering agreements. As opposed to analytical
game-theoretic models, which focus on proving the existence of equilibria,
GENESIS-CBA is a computational model that simulates the network formation process
and allows us to actually compute distinct equilibria (i.e., networks) and to also examine
the behavior of sample paths that do not converge.

Results: We find that such oscillatory sample paths occur in about 7% of the runs, and
they always involve tier-1 ASes. GENESIS-CBA results in many distinct equilibria that are
highly sensitive to initial conditions and the order in which ASes (agents) act.

Conclusions: Our results imply that we cannot predict the properties of an individual
AS in the Internet. However, certain properties of the global network or of certain
classes of ASes are predictable.

Keywords: Internet interdomain network; Peering strategies; Cost-benefit-analysis;
Internet autonomous systems

Background
Tens of thousands of Autonomous Systems (ASes) interconnect in a complex and
dynamic manner to form the Internet. Each AS is an independent entity under sin-
gle administrative control, and is identified through a unique AS number (ASN), which
is assigned by a central authority, the Internet Assigned Numbers Authority (IANA)
(Internet Assigned Numbers Authority 2012). Each ASmanages its own internal network
topology and traffic routing (intradomain activity) and connects to the rest of the world
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by forming links with other geographically co-located ASes (interdomain activity). These
ASes generate traffic destined for other ASes in the Internet, consume traffic destined for
them, and some of them transit traffic, i.e., they carry traffic on behalf of other ASes to
transport it to its destination.
ASes belong to different categories: enterprise networks (or stubs), e.g., university cam-

puses, banks etc.; content sources, which generate much more traffic than they consume,
e.g., Google, Facebook, YouTube etc.; access providers, which consume much more traf-
fic than they generate, e.g., residential ISPs, Comcast, France Telecom; transit providers,
which carry traffic on behalf of other ASes to its destination, e.g., Level 3 Communica-
tions, Cogent, etc. Various combinations of the aforementioned categories also exist, e.g.,
ASes that provide both transit and access services such as AT&T. Thus, the Internet is
a network of ASes where traffic flows from one AS to another en route to its destina-
tion. A traffic flow may traverse multiple transit providers before reaching its destination
AS. Additionally, ASes differ in geographic size (expanse) and economic parameters
(e.g., transit prices).
ASes connect with one another mostly through two types of relations: customer-

provider (or “transit”) links and settlement-free peering links. Under the customer-
provider relationship, the provider is responsible for connecting the customer with the
rest of the Internet. The provider may itself have a transit provider and so on. Settlement-
free peering (subsequently referred to as “peering” for brevity) is more subtle than a
customer-provider relationship. In peering, two ASes (or peers) agree to exchange traffic
between themselves and their customers over a shared link. Peers do not pay each other
for this exchange; however, they share the cost of the link.1 For example, ASes peering
at an Internet Exchange Point (IXP), use the IXP’s infrastructure for peering. Thus, the
IXP’s infrastructure forms the shared link between the peers. While they do not pay one
another for the traffic that they exchange among themselves, they pay the IXP for usage
of its infrastructure.
Peering is typically carried out with the objective of saving transit costs by diverting

traffic from customer-provider links to peering links. ASes generally follow broad rules,
referred to as “peering strategies” to determine their peering links. Examples of such
rules-of-thumb include Open (peer with all co-located ASes except customers), Selective
(peer with only those ASes that have similar traffic volume), Restrictive (do not peer with
anyone unless the peering relationship is necessary to maintain global reachability). The
highest level of the Internet consists of a clique of approximately 15 ASes fully meshed
among themselves through peering links. This clique is known as the “Tier-1” clique and
these ASes are known as “Tier-1 transit providers”. Tier-1 providers do not require a tran-
sit provider as they can reach the entire Internet through their customers and peers.
Figure 1 provides an illustration of these topological concepts. In Figures 1a and 1b x, y,
z, w and T are ASes; T is a Tier-1 provider, x and y are transit providers, and w and z are
stubs. Figure 1a shows the flow of traffic between transit providers and stubs through the
Tier-1 provider. In Figure 1b, the introduction of a peering link between x and y causes the
traffic to flow over a different path, avoiding the Tier-1 provider altogether. This results
in reduced transit costs for x and y. Figure 1c illustrates the concept of the Tier-1 clique in
the Internet. The ASes shown are Tier-1 providers, which form a complete mesh among
themselves through peering links. Traffic between their customer trees is routed through
these peering links.
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Figure 1 Illustration of Internet topological concepts.(a) Traffic flow before peering. (b) Traffic flow after
peering. (c) Tier-1 clique.

Most interactions between ASes are local (unilateral in the case of provider selection
and bilateral in the case of peering), decentralized and dynamic. These local connectiv-
ity decisions, however, can have a global impact on the economic viability of all ASes and
the structure of the Internet. The Internet remains in a persistent state of flux, subject to
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changes in various exogenous factors, e.g., geographic expansion of ASes, new entrants
in the connectivity market, removal of nodes from the network owing to bankruptcies,
changes in technology, etc. How will the Internet change due to consolidation of con-
tent (Labovitz et al. 2010), large penetration of video streaming, falling transit prices
(Internet Transit Prices: Historical and Projected 2010), expanding geographic footprint
of content providers (Gill et al. 2008), cheap local availability of peering infrastructure
at IXPs (Augustin et al. 2009)? We proposed a computational agent-based network for-
mation model, called “GENESIS” (Lodhi et al. 2012b), as a tool to study such questions.
GENESIS ismodular and easily extensible, allowing researchers to experiment with differ-
ent peering or provider selection strategies, traffic matrix characteristics, routing policies,
cost parameters, etc.
In the context of the interdomain connectivity, ASes face an important question:

which other ASes should they peer with? GENESIS does not empower agents to choose
their peering strategy; instead, a peering strategy is assigned to each agent based on
its hierarchical status: Tier-1 providers use Restrictive, all other transit providers use
Selective and stubs use Open peering strategy. In this paper, we take the concept of
choosing peers much further than just choosing a peering strategy and then peering
with all those ASes that satisfy the chosen strategy. We modify the peering mecha-
nism in GENESIS by introducing a Cost-Benefit-Analysis (CBA) scheme, wherein transit
providers analyze the impact of each peering link on their economic fitness and then
decide whether to peer or not. We refer to this modified version of GENESIS as
GENESIS-CBA
CBA is not just another peering strategy like Selective, Restrictive or Open; it is a

completely different way of deciding which ASes to peer with. Other peering strate-
gies are rules-of-thumb and are used to approximate cost-benefit-analysis. They are
used because they are easier to deploy. However, our work shows that such infor-
mal analysis can lead to situations where ASes end up choosing peering strategies
detrimental to their long-term economic fitness (Lodhi et al. 2012c). With CBA,
agents can engage in precise analysis of the impact of each peering link on their
fitness.
In this paper, we first introduce the main features of GENESIS and then introduce our

cost-benefit-analysis scheme, as proof-of-concept, to study the properties of the resulting
networks. Starting from a population of ASes and an initial topology, the model executes
an iterative process in which each AS acts asynchronously to optimize its set of provider
and peering links. We focus on the dynamic behavior of the model, identify the cause of
some oscillatory sample paths (about 10% of the runs), and analyze the variability of the
resulting equilibria.

Relatedwork

Most previous related work has focused on characterizing and modeling the AS-level
Internet topology. Various graph theoretic models aim to reproduce observed Inter-
net topological properties (e.g., power-law degree distribution (Faloutsos et al. 1999))
(Wang and Loguinov 2006; Yook et al. 2002;Wang X and Loguinov 2010). Another class of
models takes a bottom-up approach (Li et al. 2005), modeling the optimization objectives
and constraints of individual ASes, to create graphs that have the same topological
properties (Li et al. 2005; Fabrikant et al. 2002; Chang et al. 2003; Corbo et al. 2009).
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The GENESIS model was first introduced by Lodhi et al. (2012b). GENESIS dif-
fers from previously mentioned related work because it does not aim to be a topol-
ogy generation model or tool; instead, it captures interdomain traffic flow, geographic
constraints and economics to model the network formation process. The main dif-
ference between GENESIS (Lodhi et al. 2012b) and this work is the mechanism
used by transit providers to determine their peers. In GENESIS, transit providers
use rule-based peering strategies: Tier-1 transit providers are assigned Restrictive
while all other transit providers are assigned Selective strategy. A transit provider
using Restrictive strategy does not peer with any other agent unless the absence of
a peering relationship results in a disconnected network; a transit provider using
Selective strategy peers with agents which have similar traffic volume (it uses the
ratio of total traffic volumes to determine the similarity of other agents to itself ).
Such rule-based peering strategies may lead to extraneous costs from redundant peer-
ing links and may prevent beneficial peering links from being formed as shown
by Lodhi et al. in (2012a). GENESIS-CBA does away with such rule-based peering
strategies and introduces a new Cost-Benefit-Analysis module to GENESIS. Addi-
tionally, GENESIS-CBA does not assign peering strategies to transit providers based
on their hierarchical status; it empowers them to analyze the impact of each peer-
ing link on their fitness and then choose only those peers that can improve their
fitness.
A large body of work on game-theoretic network formation models exists in the com-

puter science and economics literature.We refer the interested reader to two recent books
(Goyal 2007; Jackson 2008). Those models capture the objectives and potential strategies
of each node as players in a non-cooperative game, and focus on proving the existence
of (typically many) equilibria. The need for mathematical tractability, however, requires
significant simplifications (such as lack of geographic constraints, simple cost functions,
or uniform traffic flow between nodes. Consequently, the resulting networks are typically
simple graphs, such as rings, trees or other regular structures. We avoid such simplifica-
tions in GENESIS-CBA. Additionally, few approaches in that line of work have focused
on the dynamics of the network formation process and on the selection between multiple
possible equilibria.
Our work is most related to agent-based computational models that simulate the

dynamics of the network formation process, capturing the asynchronous and decen-
tralized process through which nodes adjust their connectivity. Holme et al. propose
an agent-based network growth model (Holme et al. 2008). However, they treat link
formation as a random process, and do not capture link rewiring, settlement-free
peering, and use hot-potato routing instead of realistic policy based shortest-path
Internet routing. The model of Chang et al. (2006) uses hard-wired strategies for
provider and peer selection, among other differences. The ITER model of Dhamd-
here et al. (2010) is more similar to GENESIS-CBA, but it assigns a specific func-
tion to each agent (e.g., content provider, enterprise customer etc.) Additionally,
peering strategies are pre-assigned to the agents. In our work both the hierarchi-
cal position of the agent and its peering strategies are an outcome of the model.
Their goal is to study the evolutionary transition of the Internet from a hierarchical to
a flat structure, while our focus is on the peer selection mechanism adopted by transit
providers.
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Methods
The GENESIS model

We consider a population of N agents (representing Autonomous Systems) which inter-
connect through two types of links: customer-provider and peering. Each agent has the
following attributes: a set of geographic locations in which it is present (corresponding
to IXPs), a certain traffic volume that it sends to and receives from every other agent,
and certain economic parameters, such as the transit price it would charge to its poten-
tial customers at a given location. We do not assign a business function to agents a
priori; an agent may act as a transit provider, content/access provider, enterprise orga-
nization, or any combination of these functions depending on its generated/consumed
traffic, transit pricing, or geographical presence. An inter-network traffic matrix gives
the average traffic volume sent from each agent to every other agent. The model only
captures the interconnections between distinct agents and does not consider intrado-
main activity and connectivity. The geographic locations, transit prices and traffic flow
of each agent remain constant during the timescales of interest in this model. We focus
on the impact of the dynamics of provider and peer selection: how does the internetwork
and the economic fitness of agents change with time as agents choose the best transit
provider and peers for themselves? Table 1 provides a list of all notations used in the
model.

Geographical presence

Each agent is placed in one or more geographic locations. These locations are roughly
analogous to the IXPs in the real world. The world consists of GM locations and an agent
x is present at a setG(x) of randomly assigned locations. Two agents are co-located if they
share at least one location. For agent x, O(x) denotes the set of agents that are co-located
with x. A link between two agents can be formed only if they are co-located. An exception
to this rule exists if x and y are non-colocated Tier−1 agents. This exception is introduced
to ensure that the network is always connected.

Trafficmatrix and transit traffic

The element Txy of the N-by-N interdomain traffic matrix T denotes the average traffic
volume generated by agent x and consumed by agent y. Overall, x generates traffic VG(x)
and when aggregated across all consumers of traffic it is given by:

VG(x) =
N∑
i=1

Txi (1)

Overall, x consumes traffic VC(x) and when aggregated across all producers of traffic it
is given by:

VC(x) =
N∑
i=1

Tix (2)

Txx=0, i.e., we do not capture exchange of traffic locally within the agent. The transit
traffic VT (x) of x is the traffic volume that is neither generated nor consumed by x; it only
passes through x enroute to its destination.
The transit traffic of an agent depends on the underlying network topology and the

routing algorithm. Even if the interdomain traffic matrix T is constant, the transit traffic
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Table 1 List of abbreviations & notations

Notation/Abbreviation Explanation

AS Autonomous System

IXP Internet Exchange Point

CBA Cost Benefit Analysis

O(x) Set of agents geographically co-located with x

G(x) Set of geographic locations where x is present

C(x) Set of agents which are customers of x

S(x) Peering strategy of x

R(x) Transit provider of x

Txi Traffic originating in x and destined for i

VG(x) Traffic generated by x

VC(x) Traffic consumed by x

VT (x) Traffic transiting x

VP(x) Traffic exchanged between x and its provider

V(x) Total traffic managed by x

Vxy Total traffic exchanged between x and y in then network

TC(x) Transit cost of x

TR(x) Transit revenue of x

PCprv(x) Private peering cost of x

PCpub(x) Public peering cost of x

F(x) Fitness of x

PPpub(x) Public peers of x

PPprv(x) Private peers of x

PP(x) All peers of x

N(t) State of network at time t. The state of the network is defined by the

topology of the network and the peering strategies of all agents

α Peering cost per Mbps

β Economies of scale exponent for peering traffic

τ Economies of scale exponent for transit traffic

� Private peering threshold traffic volume (Mbps)

of an agent may change as the underlying topology changes. The total traffic volume of
an agent V (x) is given by the following expression:

V (x) = VC(x) + VG(x) + VT (x) (3)

Economic attributes

The economic attributes of an agent include its transit price, transit and peering costs,
transit revenue and fitness.

Prices Each agent x maintains a vector of prices P(x). Each element of the vector corre-
sponds to the price the agent has in each location in which it is present. ASes generally
maintain different prices at different geographic locations to reflect the underlying dif-
ferences in competition. The price of agent x in each location is determined randomly,
independent of its prices in other locations and the prices of co-located agents. The
random prices are chosen from a specific range.
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Transit cost Let x be a transit customer of y, and let Py(x) be the lowest transit price of y
across all regions in which x and y are co-located. IfVP(x) is the traffic exchanged between
x and y, then the transit payment from x to y is:

TC(x) = Py(x) × VP(x)τ (4)

where τ is a transit traffic exponent that captures the economies-of-scale observed in
practice. The transit revenue of y, TR(y) is the aggregate of transit costs incurred by all
transit customers of y. Let C(y) denote the set of all transit customers of y. Then its transit
revenue is given by:

TR( y) =
∑

∀x∈C(y)
TC(x) (5)

Peering cost Agents engaging in settlement-free peering relations share the underlying
peering costs. There are two primary mechanisms for peering — private and public —
that have different cost structures. If the traffic exchanged between two peers is less than
a threshold � Mbps they peer publicly at an IXP, otherwise they peer privately. In public
peering, agents exchange traffic over a common switching fabric at an IXP, aggregating
traffic from different peering sessions through the same port, whereas in private peering
they set up a direct link with each peer (Norton 2011). (DE-CIX) provides an example of
Internet peering costs at a European IXP.

Private peering cost Let Vprv(x, y) be the traffic exchanged between agent x and its peer
y over a private peering link. The total cost of private peering for x is given by:

PCprv(x) = α×
∑
y

Vprv(x, y)β (6)

where α is the peering cost per Mbps and β is the peering traffic exponent that accounts
for economies of scale.

Public peering cost Let Vpub(x, z) be the traffic exchanged between agent x and its peer
z over the public peering infrastructure. As x aggregates all its public peering traffic over
the same port, the corresponding cost is:

PCpub(x) = α

(∑
z

Vpub(x, z)

)β

(7)

Fitness The fitness of an agent represents its net profit,

F(x) = TR(x) − TC(x) − PCpub(x) − PCprv(x) (8)

If an agent is a stub, i.e., an AS without any customers, the first term is zero and the agent’s
fitness will be negative.

Peering

Each agent x has a peering strategy S(x). Two agents x and y are potential peers if (a) x and
y are co-located (b) x and y do not have a customer-provider relationship (c) the traffic
exchanged between x and y over the proposed peering link, VPP(x, y), will be greater than
a certain threshold � Mbps. The above conditions define universal peering constraints
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for all pairs of agents. However, potential peers x and y can establish a peering relationship
if and only if they satisfy the constraints of each other’s peering strategies.
Unlike provider selection, where a customer unilaterally chooses its provider, peering is

a bilateral decision process. Thus, two potential peers x and y can peer if and only if the
constraints of both S(x) and S(y) are satisfied. Depeering, however, is a unilateral decision
by one of the peers.
The set of all public and private peers of x is denoted by PPpub(x) and PPprv(x)

respectively. PP(x) denotes the set of all peers of x.

PP(x) = PPpub(x) ∪ PPprv(x) (9)

Let y ∈ S(x) denote that y satisfies the constraints of peering strategy of x.
Algorithm 1 shows the peering acquisition algorithm for node x. Algorithm 2 shows
depeering decision by node x.

Algorithm 1 Peer acquisition

Construct PPpotential(x) = {y : y ∈ O(x), y /∈ C(x), x /∈ C(y), y /∈ PP(x)}
For ∀y ∈ PPpotential(x)

If y � S(x)
If Vxy ≥ �

Do PPprv(x) = PPprv(x) + y
PPprv(y) = PPprv(y) + x

Else
Do PPpub(x) = PPpub(x) + y

PPpub(y) = PPpub(y) + x
End
Do PP(x) = PPprv(x) ∪ PPpub(x)

Algorithm 2 Depeering

For ∀y ∈ PP(x)
If y � S(x)

If y ∈ PPprv(x)
Do PPprv(x) = PPprv(x) − y

Else
Do PPpub(x) = PPpub(x) − y

End
Do PP(x) = PPprv(x) ∪ PPpub(x)

In this paper, we consider two peering strategies: Open and Cost-Benefit-Analysis
(described later).We emphasize that GENESIS is not limited to these particular strategies.
In our previous work (Lodhi et al. 2012b) we have implemented and analyzed Selective
and Restrictive strategies.

Provider selection

An agent must have a transit provider if it cannot reach all other agents in the network
via its peers and customers. Agent x selects a provider y if: (a) x is co-located with y, (b)
y is “larger” than x (explained next), (c) y is not a peer of x, (d) y is not a customer of an
existing peer of x, and (e) y is the least expensive among all agents that satisfy the previous
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constraints. We say that an agent y is larger than an agent x if y is present in at least as
many locations as x, and it carries more transit traffic than x. Formally, the provider of
node x denoted by R(x) is given by:

R(x) = arg min
y∈O(x)

P(y) : VT (y) > VT (x), |G(y)| ≥ |G(x)|, y /∈ PP(y), y /∈ C(PP(x))

(10)

If an agent x cannot find a provider that fulfills the previous criteria, then x becomes a
tier − 1 (T1) AS. In order to ensure a connected network, T1 agents form a clique using
peering links, even if they do not overlap. Amore detailed analysis and justification of this
provider selection model has appeared in (Lodhi and Dovrolis 2010).

Routing

In GENESIS, interdomain traffic is routed as in the real-world Internet. Traffic follows the
shortest path subject to two common policy constraints: “prefer customer over peer over
provider links” and satisfy the “valley-free” routing property. This traffic routing scheme
is illustrated in Figures 1a and Figures 1b.

Initial topology

The model is initialized using an initial network topology. To create the initial network
topology, we select agents sequentially and at random. For a selected agent x, we deter-
mine its provider randomly from the set of agents that (a) overlap with x, (b) are not in
the customer tree of x, and (c) have greater geographic expanse than x. If we cannot find
a provider for an agent, then it joins the clique of tier-1 agents.

Network formationprocess

An execution, or sample path, of GENESIS proceeds in discrete time units called itera-
tions. In each iteration, every agent plays asynchronously once. The order in which agents
play during an iteration is determined at the start of the sample path, and it remains
the same throughout that sample path. Every time an agent plays, it carries out the fol-
lowing actions in order: (a) Examine depeering with existing peers, (b) Examine peering
with new peers, (c) Provider selection, and (d) Peering strategy update. At the end of
each iteration, we recompute the fitness of each agent. If none of the agents has adjusted
its connectivity and peering strategy in that iteration, then it is easy to show that there
will be no changes in subsequent iterations, and we say that GENESIS has reached an
equilibrium.
The state of the network at any point in time can be defined based on the connections

and peering strategy of all agents. Two statesA and B are distinct if they differ in terms of
the underlying network topology or the peering strategy of one or more nodes. Even if we
start with the same population of agents and the same initial topology, two sample paths
can result in two distinct equilibria as a result of the different order in which nodes may
play.
The network formation process in GENESIS is deterministic and so it can have one of

two possible outcomes: either convergence to an equilibrium, or a limit cycle in which the
network moves repeatedly through the same sequence of states. We describe the stability
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of the model in Section ‘Stability of GENESIS-CBA’. The network formation process is
formally described in Algorithm 3.

Algorithm 3 Network formation process

Input:
X←Ordered set of agents {x0, x1, x2, ...., xN}

Begin
t ← 0
Start Iteration i ← 0
Play agent xi

Examine depeering for agent xi
If xi depeered any peer in examination above

Do Compute VT(xk) ∀xk ∈ X
Examine peering for agent xi
If xi acquired any new peer in examination above

Do Compute VT(xk) ∀xk ∈ X
Examine provider selection for agent xi
If xi changed its provider in examination above

Do Compute VT(xk) ∀xk ∈ X
If i == N

Do Compute F(xk) ∀xk ∈ X
Do Record S(t)
If t > 0 && N(t) == N(t − 1)

End Equilibrium
Else If t > 1 && N(t) == N(t′) : ∃t′ < t − 1

End Oscillation
Else

t ← t + 1]
Go to Start Iteration

Else
i ← i + 1
Go to Play

Peering strategies in GENESIS-CBA

The economic objective of peering is to offload as much upstream transit traffic on
provider links to settlement-free peering links thus saving transit costs. We consider the
following two peering strategies in this paper:

Cost benefit analysis

When using Cost Benefit Analysis (CBA) peering strategy, an agent x separately evaluates
the impact of each peering link (existing or potential) on its fitness, as opposed to broad
rule-based peering strategies, e.g., Selective, Open, etc. For example, underOpen strategy,
x would peer with all potential peers regardless of the impact of each peering relationship
on its fitness. Under CBA, x agrees to establish (or retain) only those peering links that
can have a positive impact on its fitness. In GENESIS-CBA, only transit providers employ
the CBA strategy.
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In order to establish a new peering link using CBA, x evaluates each potential peer y
by hypothetically establishing a peering link with it. Each new link in the network causes
some traffic to be re-routed along different paths based on the interdomain routing policy.
x computes the impact of the hypothetical peering link by updating its traffic flow, costs
and revenue. x agrees to peer with y if and only if its fitness increases as a result of the
hypothetical link. In the real world, such link evaluations are carried out through peer-
ing trials. Under a peering trial, two ASes establish a peering relationship for a short
time period and evaluate the impact of the temporary link on their economic fitness. The
link is retained if both peers find the relationship beneficial for their fitness, otherwise
it is terminated. Similar evaluations are carried out for existing peers when using CBA.
Each existing peer is hypothetically depeered and the impact of depeering on fitness is
computed. The link is terminated if depeering improves fitness, otherwise it is retained.

Scalability of CBA We assume that an agent x can choose any number of peers from
PP(x) (from 0 to n−1). Traffic in the interdomain network is routed based on the shortest
path prefer-customer-then-peer-then-provider routing policy. The addition (or removal)
of a peering link may affect the flow of traffic on other peering links. Thus, for x, peering
with agent yi may impact the evaluation of agent yj. We explain this by means of the fol-
lowing example. Let yj be a customer of yi. Let Vxyi and Vxyj denote the traffic exchanged
between x and yi and yj respectively. If x peers with yi, then traffic from both yi and yj
flows over the x—yi peering link as shown in Figure 2. The peering cost for x with the
single peering link is given by Equation 11. If x peers with both yi and yj then traffic from
both ASes traverses separate peering links as shown in Figure 3. The peering cost for x
with both peering links is given by Equation 12 while Equation 13 shows that the cost
under the two scenarios is different.

PC(x) = α × (Vxyi + Vxyj)
β (11)

PC(x) = α × (V β
xyi + V β

xyj) (12)

∵ (Vxyi + Vxyj)
β < V β

xyi + V β
xyj (13)

Hence the question is: how should x go about finding its peers from among potential
peers? In order to find the optimal set of peers, xwould have to evaluate each combination
of peers. The number of such combinations is given by:

n∑
k=1

(
n
k

)
(14)

Note that each combination would involve evaluation of k peering links by both agents
involved. Given the large co-location density in many regions of the interdomain net-
work, the number of evaluations required to determine the optimal set of peers may be
infeasible.

CBA heuristic CBA involves computation of all traffic flows, costs and revenue by x.
Hence, employing this strategy to evaluate all potential and existing peers is not scalable.
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Figure 2 yj in customer tree of peer of x.

We propose a simple heuristic to alleviate the scalability issues with CBA. Although our
proposed heuristic does not compute the optimal set of peers, yet it allows agents to
prioritize peers based on peering traffic aggregation and avoid redundant evaluations.
Our heuristic exploits a key feature of the prefer-customer-then-peer-then-provider

routing policy employed in the Internet. It is based on the notion that if an AS x can reach
an AS y through an existing peering link Lxz with another AS z, then the peering link Lxy
would be redundant. Such a link would not save x any transit costs and would only add to
its peering costs. Thus, if x finds that it has a peering path to y, it can refuse to peer with y

Figure 3 yj peering with x.
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without actually evaluating it. Note that if x is able to reach y through an existing peering
link, then it implies that y is in the customer tree of an existing peer of x.
This heuristic is explained in Figure 4. The figure shows x and z as peers while y is in

the customer tree of z. In Figure 4a, x is not a peer of y. In this network, traffic from x to
y flows over the peering link Lxz. Thus, x is able to reach y over an existing peering link. If
Vxz andVxy is the total traffic volume exchanged between x and z, and x and y respectively,
then the peering cost of x is given by:

PC(x) = α × (Vxz + Vxy)
β (15)

In Figure 4b, x peers with z. Thus, traffic between x and z flows over the direct peering
link and now the peering cost of x is given by:

PC′(x) = α × (Vxz)
β + α × (Vxy)

β (16)

Note that the peering cost of x is increased because of the additional peering link.

PC(x) < PC′(x) ∵ (Vxz + Vxy)
β < (Vxz)

β + (Vxy)
β (17)

Thus, if an agent x can reach another agent y through an existing peer higher
up in the network hierarchy, it does not need to establish a redundant peering link
with y. The redundant peering link does not reduce upstream transit costs; on the
other hand it adds to the cost of peering by reducing the advantage of economies-of-
scale. Therefore, x can decide not to peer with y without actually doing cost-benefit-
analysis. Algorithms 4 and 5 give the procedures for depeering and peering respectively
using CBA.

Algorithm 4 Depeering by agent i using CBA

Input PP(i) = {x1, x2, ....., xn}
Sort PP(i) hierarchically PP(i) = {x1, x2, ....xt, xt+1, ...xz} : xt /∈ C(xt+1)

Do PP(i) ← PP(i) − xk : xk ∈ C(xj), j < k {Remove from PP(i) all peers which are in
customer trees of other existing peers}
Do CBA for ∀xj ∈ PP(i)

Do Foriginal ← F(i)
Do Remove peering link between i and xj
Do Route traffic

a b

Figure 4 CBA heuristic illustrated. (a) x not peering with y. (b) x peering with y.
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Do Compute F(i)
Fupdate ← F(i)

If Fupdate > Foriginal
Do PP(i) ← PP(i) − xj

Algorithm 5 Peering by agent i using CBA

Do PP′(i) ← j ∀j /∈ C(k) ∀k ∈ PP(i)
Do PP′(i) = PP′

P(i)
⋃

PP′
S(i) : C(j) = ∅ ∀j ∈ PP′

P(i), C(j) 
= ∅ ∀j ∈ PP′
P(i),

PPP(i)
⋂

PP′
S(i) = ∅

Sort PP′
P(i) hierarchically PP

′
P(i) = {x1, x2, ....xt, xt+1, ...xz} : xt /∈ C(xt+1)

Do CBA ∀xj ∈ PP′
P(i)

Do Foriginal ← F(i)
Do Establish peering link between i and xj
Do Route traffic
Do Compute F(i)

Fupdate ← F(i)
If Fupdate > Foriginal
Do PP(i) ← PP(i) + xj

Do PPS(i) ← PPS(i) − xk ∀xk ∈ C(xj), xk ∈ PPP(i)
Do CBA ∀xj ∈ PP′

S(i)
Do Foriginal ← F(i)
Do Establish peering link between i and xj
Do Route traffic
Do Compute F(i)

Fupdate ← F(i)
If Fupdate > Foriginal

Do PP(i) ← PP(i) + xj

Open

An agent that uses this strategy agrees to peer with any other agent that is co-
located with it, with the exception of its direct customers. In GENESIS-CBA, the
Open peering strategy is followed by stubs. For stubs, Open peering does not always
lead to the same network connectivity as CBA. However, since most stubs have lim-
ited geographic expanse, i.e., they are co-located with only few agents and thus have
limited connectivity options, the difference in connectivity using either peering strat-
egy is often small. Additionally, stubs aim to reduce their transit costs by peering
with as many other agents as possible as they are not concerned with transit revenue.
Thus, we improve the scalability of our model by limiting CBA adoption to transit
providers only.

Parameterization of GENESIS-CBA

In the previous section we described the various components of GENESIS-CBA, with-
out mentioning any parameter values. Next, we parameterize GENESIS-CBA to repli-
cate the current state of the Internet as closely as possible. The parameter values
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of GENESIS-CBA are shown in Table 2, along with a brief explanation for each
parameter. We refer to the instance of GENESIS-CBA with these parameter values as
the Default model.

Geographic distribution

The world in the Default model consists of 50 locations. The maximum number of loca-
tions in which an agent can be present is 15. We parameterize the Default model such
that the number of locations at which agents are present follows a heavy-tailed distri-
bution. Only a few agents are present in a large number of locations; most agents are
limited to one location only. This parameterization is based on data collected from Peer-
ingDB (2012), an online database where ASes voluntarily contribute information about
themselves.

Trafficmatrix

The Default model employs heavy-tailed distributions for generated and consumed traf-
fic as seen in the real world. We parameterize the traffic matrix based on real-world

Table 2 Input parameters for defaultmodel

Parameter, symbol, description Value Explanation

Number of ASes N 500 Limited by simulation time constraints

Number of geographic locations GMax 50 Based on approximate ratio of IXPs to
peering networks in the Internet. Peer-
ingDB ratio 10.27. GENESIS ratio 10.0
(PeeringDB 2012)

Geographic expanse distribution Zipf(1.6) Based on data about number of partic-
ipants at each IXP collected from Peer-
ingDB (PeeringDB 2012). G(x) assigned
randomly to each node

Maximum expanse for an AS 15

Generated traffic distribution Zipf(1.2) Produces a heavy-tailed distribution of
outgoing traffic. With this distribution,
0.1% of the ASes generate nearly 28%
of the total traffic. This is consistent with
the behavior reported in (Chang et al.
2005; Feldmann et al. 2004) & Labovitz
et al. (2010), which show that the traffic
produced by high-ranking ISPs and con-
tent providers follows a Zipf distribution.
VG(x) assigned randomly to each node

Consumed traffic distribution Zipf(0.8) Produces heavy-tailed distribution of
incoming traffic, similar to measured traf-
fic distribution at Georgia Tech.

Mean consumed traffic 500 Mbps VC(x) ∝ |G(x)|, rationale being that a
node with large expanse will also have a
large number of access customers

Private peering threshold� 50 Mbps Survey of peering strategies (Peering
Strategy Survey 2011)

Transit cost multiplier range P(x) $[35,45]/Mbps per iteration Parameterized based on IP transit prices
recorded by Telegeography (Telegeogra-
phy 2012). P(x) assigned randomly

Transit cost exponent τ 0.75 Parameterized based on data from
Chang et al. (2006) and Peering Strategy
Survey (2011)

Peering cost multiplier α $20/Mbps per iteration

Peering cost exponent β 0.40

Selective peering ratio σ 2.0



Lodhi et al. Complex Adaptive SystemsModeling 2013, 1:10 Page 17 of 29
http://www.casmodeling.com/content/1/1/10

observations reported in (Chang et al. 2005; Feldmann et al. 2004; Labovitz et al. 2010).
With this parameterization, 0.1% of all agents generate 28% of all the network traffic.

Economic components

We parameterize economic components of the model, e.g., transit cost per Mbps, peer-
ing cost per Mbps etc. based on real-world data. We use transit pricing data from
Telegeography (2012) and peering cost per Mbps data from Amsterdam IXP (2012).

Results and discussion
We implemented GENESIS-CBA as a stand-alone single-threaded tool using C++. Our
implementation did not use any existing network simulation or modeling tool. The results
presented subsequently all correspond to this implementation. However, as stated earlier,
GENESIS-CBA is modular and extensible and can easily incorporate new methods and
policies.

Validation

The validation of models such as GENESIS-CBA is inherently difficult due to the lack of
available data about the economics of ISPs, the interdomain traffic matrix, and the result-
ing traffic flow. Even the AS-level Internet topology is not accurately known because only
a small fraction of peering links are visible through BGP route monitors. Consequently,
we have carried out a best-effort approach to validate GENESIS-CBA, examining whether
it produces certain well-known qualitative properties of the Internet. This effort should
be viewed as a sanity check, rather than a comprehensive validation process, in view of
the previous difficulties.

Average path length

The average path length of the AS-level Internet has remained almost constant at 4 AS-
hops, at least during the last twelve years (Dhamdhere and Dovrolis 2011). GENESIS-
CBA produces networks with approximately the same average path length (4.4 AS-hops)
with 500 agents.

Degree distribution

Figure 5 shows the complementary CDF (C-CDF) of the degree distribution that results
from the default GENESIS-CBA model. Though not a strict power law (the tail of the
distribution is truncated due to the limited number of agents), it is clear that the degree
distribution is highly skewed, with few agents having a much larger degree than most
other agents.

Link LoadDistribution

Figure 6 shows the distribution of link traffic loads at equilibrium. Most links in the net-
work are peering links (among stubs) that carry small traffic volumes. There are, however,
few links that carry several orders of magnitude more traffic; those are mostly transit and
peering links between large transit providers, or between transit providers andmajor con-
tent producers. Akella et al. (2003) have observed a similarly skewed distribution of link
loads in the Internet.
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Fraction of transit providers

In the Default model, about 10% of the agents end up as transit providers at equilib-
rium, which is similar to the corresponding fraction reported in the measurement study
by Dhamdhere et al. (2011).

Model characteristics

Convergence delay

We define the convergence delay as the number of iterations it takes for the sample path
to converge to equilibrium.
We find that the convergence delay is less than 10 iterations for all sample paths

that converge to equilibrium. We investigate why the network converges to equilibrium
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so rapidly despite the fact that agents act asynchronously. Figure 7 shows the num-
ber of agents that acquire new peers, remove existing peers, change transit providers,
or change peering strategies over time for a typical sample path of the model. The
figure shows a rapid decline in the number of agents that switch transit providers
and peering strategies (between CBA and Open). We find that the network con-
verges to stability in a small number of iterations due to the rapid convergence of
stubs to their preferred transit providers. As agents select the cheapest eligible tran-
sit provider, the number of transit providers in the network reduces significantly in
the first few iterations. Most agents become “stubs” (agents without transit customers),
and converge to the cheapest transit provider and peering strategy. The dynamics of
transit provider selection in the model dictate that stubs never change their tran-
sit providers and cannot themselves become transit providers at a later time. As a
result, their peering strategies do not change over time. The few remaining transit
providers accumulate large transit volumes and compete for the remaining customers.
As a result, some existing transit providers also become stubs. This effect reduces the
number of transit providers, enhancing stability in the network.

Effect of population size

We find that the behavior of themodel does not change significantly as the population size
increases over a fixed number of geographic locations. Figure 8 shows this effect. Initially,
with a small number of agents, the population density across all geographic locations is
low. At this point, however, more transit providers are required to maintain connectiv-
ity between all agents across all locations. As the population size increases, geographic
locations become saturated with agents providing transit at the same price, causing the
number of transit providers to stabilize (agents always choose the cheapest eligible tran-
sit provider). The stability in the number of transit providers leads to stable network
characteristics, e.g., the average path length. Similarly, for reasons described above, the
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Figure 8 Scalability of the model.

convergence behavior of the model also does not change significantly with increasing
population size.

Effect of geographic and traffic distribution

Our investigation reveals that co-location among agents has the most significant effect
on the resulting networks. We vary the Zipf parameter of the geographic distribution
to determine the effect on the resulting networks. An increase in the parameter value
makes the geographic distribution more skewed. Figure 9 shows the effect of geographic
distribution on network characteristics. We find that a less skewed distribution leads to
increased co-location density (i.e., more agents are co-located with one another) resulting

Effect of geographic distribution on
network characteristics
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in a larger number of transit providers, greater connectivity, and reduced average path
lengths.We also find that as a result of increased connectivity more traffic bypasses transit
links and instead reaches its destination by traversing only peering links.

Stability of GENESIS-CBA

The network formation process in GENESIS-CBA is deterministic (the parameters of the
population and the playing order does not change during a sample path), and so it can
have one of two possible outcomes: convergence to an equilibrium, or a limit cycle in
which the networkmoves repeatedly through the same sequence of states. An equilibrium
results when none of the agents changes its connections or peering strategy during an
iteration. On the other hand, a limit cycle (or oscillation) results when the state of the
network S(tk) in the k’th iteration is identical to the state S(tk−m) in the (k-m)’th iteration,
withm > 1. The length of the limit cycle in that case ism. Note that there is no possibility
for chaotic trajectories because the system has a finite number of states, and so if it does
not converge to an equilibrium, it will eventually return to a previously visited state.
We ran many simulations with distinct node populations to evaluate how often the

network formation process results in oscillations in practice. We observed that oscil-
lations take place in about 7% of the sample paths. Even though this is not a large
percentage, it is also not negligible and it has an important implication: if GENESIS-
CBA is a good model for the Internet, we should not expect that the the interdo-
main connectivity in the latter will be stable. We return to this point at the end of
this section.

Why study equilibria?

The Internet is in a constant state of flux, as new ASes and IXPs appear, and the traffic
matrix, prices and costs vary with time. The reader may wonder, why study equilibria in
a system that is constantly evolving?
The fact that GENESIS-CBA leads to an equilibrium, at least in 93% of the sample paths,

means that as long as those exogenous parameters (set of nodes, locations, traffic matrix,
costs, etc) remain constant, the network formation process converges to a stable point. If
this convergence takes place quickly, compared to the time scales in which those exoge-
nous parameters change, the evolution of the Internet can be thought of as a trajectory
through a sequence of equilibria, with a new equilibrium resulting every time there is a
change in one of the previous exogenous parameters.
The study of equilibria in the context of cost-benefit-analysis enables us to study the

situation where each agent, by using cost-benefit analysis, has reached a situation where
it has no further incentive to change its connectivity. Additionally, the study of equilibria
gives us insight into the behavior of the model: what factors, e.g., initial topology, playing
order of agents etc., influence the formation of the network for a given population setting;
which factors have a greater impact on the network formation process; are the networks
formed for different populations with the same statistical features qualitatively the same
or different etc.

Oscillations

Causes of oscillations We analyzed many oscillatory sample paths, attempting to iden-
tify a common cause behind all of them. We find that oscillations occur primarily owing
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to the inability of agents using CBA to forecast with complete accuracy the network-wide
effects of their actions. Agents using CBA can predict the immediate effect of forma-
tion (or termination) of a peering link. However, they cannot predict how other agents in
the network will react to their actions. During the course of network formation a certain
agent may be forced to revise its decisions multiple times, given the reactions of other
agents. Thus, GENESIS-CBAproduces a complex co-evolutionary network where limited
foresight of agents may lead to complex oscillatory patterns.
We find that oscilltions are limited to the tier-1 clique owing to the CBA heuristic condi-

tions of not peering with a peer’s customers.We explain this pattern with a simple example
shown in Figure 10.
In Figure 10a, x and y are two tier-1 transit providers peering with each other using

CBA. x and y have customers a and b respectively. x and y do not peer with each other’s
customers as the CBA scheme prohibits such links. Consider the following sequence of
actions:

1. x plays and evaluates its peering link with y using CBA. It does so by hypothetically
depeering y and recomputing its fitness.

2. Assume that x satisfies the transit provider selection criteria for y. y chooses x as
its transit provider after being depeered as shown in Figure 10b.

3. x recomputes its fitness after depeering y and finds that its fitness has increased. As
y switched from peer of x to its customer, x’s transit revenue increased and its
peering cost decreased. x therefore decides to depeer y.

4. Since y is no longer a peer of x, it can peer with the customers of x. y evaluates
peering with a. Since y can save transit costs by peering with a, its fitness increases.
Thus, y decides to peer with a as shown in Figure 10c.

5. Note that the y—a peering link decreases the transit traffic of x, as traffic a←→b
and a←→y does not transit through x any more. As a result of the decreased
transit traffic, x no longer satisfies the provider selection criteria for y. Since
GENESIS-CBA does not allow a partitioned network, a peering-by-necessity
relationship is established between x and y. Once y peers with x, it no longer needs
to peer with a, a customer of x. This brings us back to the initial network of
Figure 10a.

a b c

Figure 10 Illustration of oscillations in GENESIS-CBA. (a) Tier-1 peers. (b) Tier-1 depeered. (c) Reduction in
transit traffic of one of the Tier-1 agents.
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The previous example is only an abstraction of more complex oscillatory sample paths
that occur in practice, involving more agents and more steps.

Network-wide effects of oscillations We next study the effect of oscillations on the
entire network as well as the affected agents. We use the Jaccard Similarity metric to
quantify the similarity between two network states. If LA and LB are the sets of links
in states A and B, respectively, then the Jaccard similarity between the two states is
defined as:

JAB = |LA ⋂
LB|

|LA ⋃
LB|

Note that a link is defined by both its two end-points as well as its type (transit ver-
sus peering). The value of JAB = 0 indicates that the two networks do not have any link
in common, whereas JAB = 1 indicates that the two states are exactly the same. In addi-
tion to the complete network, we also examine the sub-network composed only of transit
providers, excluding stubs and their links. We refer to this sub-network as the provider
network.
For each oscillatory sample path, we compute the minimum Jaccard similarity across all

pairs of states during an oscillation. Figure 11 shows the distribution of these minimum
similarity values, across all oscillatory sample paths.When we examine the complete net-
work, the minimum Jaccard similarity is almost equal to one in all oscillations, i.e., the
oscillation affects the connectivity of only few nodes. We observed that in 95% of oscilla-
tions the number of agents that undergo any change (connectivity and/or strategy) during
the oscillation is less than 5% of the total network population. Note that all agents involved
in oscillations are not transit providers; some agents are stubs that act as passive partici-
pants in the oscillation. When we only examine the provider network, the corresponding
minimum Jaccard similarity values are lower but still higher than 0.90. In other words,
oscillations cause more fluctuations in the connectivity of transit providers but those
fluctuations are still mostly local in scope.
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Length of oscillations We measured that 95% of the oscillatiory sample paths have a
limit cycle length that is less than 15 iterations. This length is positively correlated with
the number of affected ASes (Pearson correlation coefficient: 0.94). Thus, themore agents
change connectivity or peering strategy during an oscillation, the longer it will take for
the network to repeat its limit cycle.

How are oscillations relevant to the internet? Peering agreements and negotiations
are typically shrouded in secrecy, yet peering disputes between high-profile nodes over
traffic ratios, content types, and peering conditions often generate attention. For example,
Cogent and Sprint-Nextel terminated their peering relationship in 2008 after they failed to
resolve a peering dispute. However, the peering relationship between them was restored
after some time. Similar disputes have been reported between Level-3 and Cogent (2005),
Cogent and Telia (2008), and Level-3 and Comcast (2010). Peering disputes between large
providers often have significant effects, as single-homed customers of those nodes are
unable to reach one another.
The fact that GENESIS-CBA can produce oscillatory sample paths should not be con-

sidered an artifact of the model. As described earlier, oscillations in GENESIS-CBA occur
because some providers switch between tier-1 and non-tier-1 status, which resembles
the peering disputes between tier-1 providers seen in practice. In the real world, such
disputes do not persist and some exogenousmechanisms (such as revised contracts, nego-
tiations, regulation or legal actions) are applied to break the impasse. GENESIS-CBAdoes
not capture those exogenous mechanisms, but it captures that the endogenous dynam-
ics of the network formation process cannot always manage to produce a stable network,
and so some additional mechanisms should be designed to resolve such oscillations when
they appear.

Variability across equilibria
In this section we focus on those sample paths that converge to an equilibrium, and exam-
ine the differences between distinct equilibria. Specifically, given a population of agents
and an initial topology, does GENESIS-CBA always result in the same equilibrium? If not,
how different are the resulting equilibria? What are the causes of these differences? Can
we predict the properties of an individual agent at equilibrium? Are there any global prop-
erties that are predictable with statistical significance? And who are the most predictable,
or least predictable, agents in a network, in terms of fitness?

Distinct equilibria

The network that emerges from a GENESIS-CBA sample path highly depends on both the
initial topology and the playing order. Specifically, given the same population of agents
and the same initial topology, 90% of the sample paths that converge to an equilibrium
produce a distinct equilibrium. If the initial topology also varies across sample paths, this
percentage increases to 95%. So, if GENESIS-CBA is a good model of the Internet, we
understand that it is very hard in practice to predict the evolution of the Internet, as even
minor changes in the order in which ASes act can have global effects.

Differences between equilibria

To quantify the difference between distinct equilibria, we again use the Jaccard Similarity
metric between the corresponding network states. Figure 12 shows theCDF of thatmetric
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Figure 12 CDF of Jaccard similarity Index between equilibria.

for all pairs of distinct equilibria resulting from 100 sample paths. Note that the Jaccard
Similarity is typically higher than 0.8 when we only vary the playing order. When we also
vary the initial topology, the similarity metric is lower (between 0.65–0.8) but still high in
absolute terms. So, even though there are many distinct equilibria, they are quite similar
in terms of topology.
Figure 12 also shows the distribution of Jaccard similarity for the subset of the network

that includes only transit providers (the “provider network”). In this case, the Jaccard
similarity is significantly lower, with 45% of the equilibrium pairs being less than 55%
similar. In other words, even though stubs often end up with the same transit provider
across different equilibria, the hierarchy of transit providers and the peering links between
them are much less predictable.

Variability of fitness distribution

We next focus on the distribution of fitness values in a network. To determine the
similarity of fitness distributions across different equilibria, we applied the two-sample
Kolmogorov-Smirnov (KS) test on fitness distributions across all pairs of equilibria. We
did so both for the entire network, and for the provider network. We could not reject the
null hypothesis that the distributions are identical for any pair of distributions at the 99%
significance level. In other words, even though there are many distinct equilibria, the sta-
tistical distribution of the agents’ fitness remains invariant. However, this does not mean
that the fitness of an individual agent would remain the same across different equilibria;
this is the subject of the next paragraph.

Variability of individual node fitness

Next, we look at the variability of the fitness of individual agents across different
equilibria. We compute the Coefficient of Variation (CoV) of the fitness of each agent
across 100 equilibria resulting from different playing orders. Figure 13 shows the CDF
of CoV of fitness for different agent classes. The CoV is close to zero for 90% of agents
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indicating that most agents see almost identical fitness in all equilibria. However, 5%
of the agents have CoV greater than 1.0 and 1% of the agents have CoV as high as 3.0.
Who are these “most unpredictable” agents and what causes the large variability in their
fitness?
We classify agents in two classes. Class-1 agents are those that are either stubs at all

equilibria, or that are transit providers at all equilibria. Class-2 agents, on the other hand,
are those that are transit providers in some equilibria and stubs in others. Figure 13 also
shows the CoV distribution for these two classes of agents. Note that the CoV of Class-1
agents is close to zero for almost all agents, while the CoV of Class-2 agents is significant
for most of them. In the following sections, we discuss the properties of the agents in each
class in more detail.

Properties of Class-1 nodes The largest fraction of agents in this class are stubs
(including agents that were transit providers initially but are stubs at equilibrium). It is
not surprising that the fitness of stubs does not vary significantly across equilibria. These
agents do not have revenues and their provider is always the cheapest transit provider at
the locations they are present at. Additionally, they use the Open peering strategy, and
so their set of peers consists mostly of other stubs that are co-located with them. Addi-
tionally, however, Class-1 includes some large, in terms of geographical expanse, transit
providers (12~15 locations). These providers have a large set of customers and so signifi-
cant transit traffic. Their large transit volume and expanse restricts their set of providers
and peers, reducing the variability in their connectivity and fitness across equilibria. Note
that tier-1 providers always belong to Class-1.

Properties of Class-2 nodes We observe that most agents in this class have mid-range
expanse (6~10 locations) and relatively high prices. Thus, while they are mostly unattrac-
tive as transit providers for stubs, smaller transit providers may choose them as provider,
depending on their expanse and transit traffic volume. The latter, however, changes
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dynamically as an agent gains or loses customers during a sample path. This aspect of the
model creates a positive feedback effect where the larger the transit volume of a node is,
the more it qualifies for being chosen as provider by other providers. However, the iden-
tity of the agents that will strongly benefit from this positive feedback depends on the
order in which the agents play. In other words, the agents in Class-2 are mostly those
that end up as transit providers in some equilibria simply because they were “lucky” in
those sample paths to get some customers early in the network formation process, accu-
mulating transit volume and then attracting even more customers. It is these agents that
exhibit the largest variation in fitness and that act as the biggest source of variability in
the resulting networks.

Conclusions
We proposed GENESIS-CBA, an agent-based network formation model that captures
interdomain traffic flow, policy-based routing, geographic constraints, and the economics
of transit and peering relations. GENESIS-CBA implements a new peering scheme that
can replace existing peering strategies. The new scheme allows agents to carry out eco-
nomic analysis for each peering link. Agents can use this analysis to form only those
peering links that improve their economic fitness. We examined the convergence proper-
ties of GENESIS-CBA, and found that GENESIS results in a stable network in most cases.
The observed cases of instability occur due to connectivity constraints in the Tier-1 clique.
GENESIS-CBA shows both path dependence and dependence on initial conditions, i.e.,
it can produce different equilibria depending on the initial topology and playing order of
nodes which we believe is also true of the Internet. We found that while these equilibria
are distinct in terms of network topology, it is possible to predict certain properties of the
network or of certain classes of nodes with statistical significance. In ongoing work, we
use GENESIS-CBA to understand the effect of the scheme on the fitness distribution of
different classes of autonomous systems in the Internet.
In future, we intend to extend GENESIS-CBA to turn it into a practical tool capable

of being deployed by the operators managing the ASes in the interdomain network. Our
objective is to align the information requirements of CBA with the information available
to ASes in the real world. CBA uses the following information for analysis: topologi-
cal information, e.g., customer-provider relationships, traffic flows between ASes and
geographic co-location. While ASes can form estimates of the previously mentioned
information from data available to them, their accuracy in the context of CBA is yet to
be ascertained, and this is one of the goals of our future work. We envision GENESIS-
CBA being deployed in the real world at a microscopic scale, i.e., at the AS level, to carry
out what-if analysis of peering decisions. In this context, CBA strategy can be deployed
by ASes in the Internet to aid in their analysis to determine which ASes to peer with.
They can use CBA to analyze the effect of existing and potential peering links on their
economic fitness.

Endnote
1There is another type of peering which is known as “paid peering” in which one peer
pays the other. However, “paid peering” is not the focus of this work.
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