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Introduction
System dynamics can be used as a tool to address many applications in a very broad sense. 
It applies to systems in many different disciplines, such as control, communication, trop-
isms, and even systems of systems (Mandl 2019). Given the very widespread use of the 
term “system,” the important questions are as follows: What does the term “system” actu-
ally mean? What makes a system “dynamic”? These terms cannot be defined through strict 
codification because a system is an abstract or vague entity (Rosen 1985). A well-formu-
lated notion of a system could, however, be developed using a nonsystem definition. A 
nonsystem can be represented by a set of isolated entities that do not interact with each 
other or a collection of entities whose relationships have no implications for the properties 
or behaviors of the entities (Pattee 1973). Given how vague word definitions can be, the 
notions that we use describe a wide variety of things (Marchal 1975). Let us thus specify 
how these notions may be understood in the light of an account of a dynamic system.
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First, a system is a collection of individual elements: it is not usual to talk about a sys-
tem having only one component (Chen and Billings 1992). It is then likely that the ele-
ments comprising the system exhibit nontrivial interactions, for instance, coherence 
in terms of moving or working together [ χ → �f → f (xi) ]. Here, x denotes an element 
composed of many individuals; f  is a function toward a certain direction (→), such as 
a goal, and f (xi) denotes coherence, which involves certain individuals ( xn ), but not all 
individuals, underlying a very well-defined goal boundary ( f  ). The second important—
indeed, key—assumption for a system is that the well-defined individuals must interact 
not just with one another but also with everything outside the system (Schöner 2002), 
which is called the environment [ xt → f (xi) → yt ]. In this equation, there are two kinds 
of interactions that xi can have with the outside environment. The outside exerts some 
impact ( x ) on them and is influenced ( y ) by them at a certain time ( t ). Thus, intuitively, a 
system can be defined as many interactive individual and embedded elements exhibiting 
a certain coherent behavior (Barabasi 2005).

Likewise, if we think about the system at any given time as defined as a set of num-
bers that are the values ( xi ) of variables, the collection of a system will be defined as 
identical to, and specified by, the functional forms fi over time (t) from time = 0 
[ dxi
dt

= fi(x1, x2, . . . , xn), (i = 1, 2, . . . , n) ]. However, no behavior of the system can 
correspond to this logic, as no other systems’ behaviors are constant in time. In other 
words, systems are such that behaviors occur over different timescales, in the same 
way that the behaviors of a group of people while ice skating occur over different time-
scales (Borgonovi et  al. 2019): every event should be the initial condition for the next 
slice of time, and every division should set the stage for the next. The coherence of per-
formance of the people (on the ice) must be nested dynamically within a continuous 
time interval (Chen and Billings 1992). Thus, if we consider that there are certain con-
tinuous approximations using finite intervals of time between changes of state within 
an interval, the system can be absorbed into a new functional type of organization 
[ dxi
dt

= gi(x1, x2, . . . , xn − 1), (i = 1, 2, . . . , n− 1)].
In this logic, the system contains two variables, each of which is absolute but each of 

which changes suddenly to the other in the field (Schöner 2002). This may be a product of 
multiple causes by which any individual changes its behavior dynamically (Ashby 1947). 
At this point, the questions of “What is a system?” and “What makes a system dynamic?” 
seem to be recognized with regard to the picture, and the situation seems far less static.

Part 1: Nonrepresentational perspectives of phenomena (theoretical basis)
There is a well-defined assumption called the problem of impoverished entailment 
(Shaw 2001), which is the minimal starting point for understanding any system of inter-
est at any level of interest. “X is about Y” is true only if “X entails Y” and “Y entails X” 
are true. This is a loop of entailment; the specificity of X to its source of Y means that 
X entails the source by which X is entailed. Diagrammatically, an entailment can be 
expressed as X→Y. The primary property of an entailment is that it propagates “truth” 
hereditarily—Y inherits the truth of X (Rosen 1991). Thus, the loop of entailment can 
be shown diagrammatically as X→Y→X, and the diagram can be read as meaning that 
truth propagates hereditarily in both directions. Such an explanation focuses on assem-
bling all parts of elements [C(s)] along with the other “things” that can influence them 
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or be influenced by them [E(s)], even the internal structure of the system [S(s)] (Mahner 
and Bunge 1997).

In this framework, when m is predicated as a mass of a particular object, it identi-
fies a substantial property intrinsic to the object that is identical whenever and wherever 
the object is observed. However, m has other relational properties that engage actual 
things. For example, when the object is grasped and brought down hard and repetitively 
on another object, then m can be a “hammer” with respect to the object. Conceivably, 
there are many relational properties that the object may have by virtue of its relation-
ship either with other objects or with perceivers-actors, but these are, at best, indefinite 
properties until a particular spatiotemporal relationship is effected (Gibson 1979). When 
this occurs, one of the many potential relational properties of the object is actualized.

However, investigating the dynamics in these cases typically requires a significant 
number of elements and obviously includes multiple components that must be man-
aged. According to researchers (Bernstein 1966), organisms have too many degrees of 
freedom. Moreover, if the parts are considered to be very strongly defined by their con-
nections and to function within the context, great complexity can be observed (Rosen 
1987). When even a single cell’s behavior is being considered, its tendencies do not allow 
certain prediction of all of these dynamics (Ford 2008; Strong and Ray 1975), and this 
prompts deep concerns over how to treat the cell relevantly as well as raising questions 
about how these behaviors form from numerous factors.

Instead of positively interpreting the system’s dynamics in terms of every encoded 
equation, the key idea is to describe why numerous modes of emergent phenom-
ena underlying local-level interaction have to be governed by simple rules (Iberall and 
Soodak 1987). Where elements are given a simple set of rules that govern their behavior 
and allow them to interact to determine what patterns emerge over time, it has been 
shown that an agent’s behavior with respect to unpredictable phenomena can arise even 
with elementary governing rules (Roundy et al. 2018). This fresh perspective on refocus-
ing a system’s dynamics is helping to bridge traditional biases and has been stimulating 
scientists to distil out simple principles, such that a better understanding of a dynamic 
system (which is not always very complicated) may be gained.

Part 2: Individual behavior in social dynamics (model‑based)
To explore the rule of thumb from a broader perspective, computer simulation has been 
performed first on the basics of a spatially explicit model of mobile agents in continuous 
space (Rangel et al. 2018) to determine the basic regulatory principles involved in the 
way they conceptualize their environment (Bonabeau 2002). In other words, the imple-
mented model shows the potential to infer how simple individual rules can lead to con-
sistent group behavior and how slight changes in those mechanisms can have a dramatic 
impact on an individual’s behavioral patterns (Reynolds 1987). Although an analysis of 
simple implication is an apparent first step in providing proof of concept, this individ-
ual-based simulation has become significant enough to be tested in a broader range of 
applications for evolutionary dynamics for the following reasons. First, as the agents 

(1)m(s) = �C(s),E(s), S(s)�.
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represent individuals who have participated from the bottom up, the actual state of their 
behavior tends to be more informative (agent-based modeling) than in other cases. Next, 
as the main point of this implementation is a description that deals with the state per 
time as the critical factor in its allocation of neighbors, the number of neighbors placed 
on the position is based on the moves scheduled for a given moment (context-varying 
cultural evolution) (Oliva 2016) [see “Methods I (agent-based model)” for more detail].

Result

The model provides a natural description of a pattern of behavior and allows us to under-
stand a realistic adaptation incorporating behavioral algorithms with social dynamics. 
The mechanisms characterized in the agenda show that the model has the capacity to 
produce three types of factors. First, the behavioral pattern is the result of the applied 
individual components; this comes not only from the initial conditions of the autono-
mous agents but also from the fact that they are interconnected. Second, the range of 

Fig. 1 1 Behavioral dynamics underlying social characteristics (coordinate system: horizontal axis = ̂ i  and 
vertical axis = ̂ j  ). Following the simulation, the left plot shows a displacement that separates individuals 
with a relative position structure controlled by the initial setting. This implies that although the pattern 
of individual behavior depends on a localized view of the initial conditions, a slight change in individual 
characteristics [individual’s upward velocity ( �vi ) resulting in a loss of group heading ( �vavg )] underlying its 
social influence [calculated from the social ties ( k = St ) multiplied by the mutation rate ( u )] has a remarkably 
diverging (a) or converging (b) effect on its displacement. The blue dots represent their position in an 
x , y coordinate plane, and the red lines denote links (see Additional file 1: Figure S5 for more detail). 2 
Approximation of the evolution underlying interconnected interactions (coordinate system: horizontal 
axis = ̂ i  and vertical axis = ̂ j  ). The plots indicate that the patterns that occur correspond to the relative value. 
With certain defaults of their relativity, a slight change in the scalar value (social ties = St) produces a dramatic 
impact at a certain point [a = St(0.55), b = St(0.56), c = St(0.57)]: blue dots = individuals, red lines = links, 
background = density with symmetrical characteristics between the individual and group headings. Notice 
that as the social ties increases a–c, symmetrical characteristics are biased to one side c (see Additional file 1: 
Figure S6 for more detail)



Page 5 of 25Park  Complex Adapt Syst Model             (2020) 8:2  

different combinations of the internal and the external states plays a part in the rapid 
propagation in the system (see Fig. 1-1). Third, however, when the interconnected rela-
tion between the internal trait underlying its external trait is applied, the widespread 
heterogeneity of the mechanisms can abstract the repertoire of displayed behaviors (see 
Fig. 1-2) (see Additional file 1: 1.4 for more detail).

The primary feature of the agents’ interactions is heterogeneous in this abstract set-
ting. As the topology of the interaction traits can lead to significant deviations from the 
predicted pattern of behavior, it may generate various effects that mimic the behavior of 
real individuals in social dynamics. At the points where these individuals interact, sensi-
ble decisions occur, in line with an empirical study showing that individuals learn how to 
keep relative velocity as a key factor for homogeneity (McLeod and Dienes 1996).

Discussion

The simulations show that different interconnection structures have an effect on which 
strategies perform better, a relationship referred to as ecological rationality. The results 
may suggest that the relative velocity can be the pure candidate and works effectively. 
According to researchers (McLeod and Dienes 1996), if an object (i.e., a ball) is already 
high in the air and travelling directly in line with the individual (i.e., the player), the indi-
vidual might utilize some simple heuristics. Namely, the individual fixes his gaze on the 
object, starts running, and adjusts his velocity to ensure that the angle of the ball above 
the horizon appears constant (Gigerenzer 2004). The prediction is not that the individ-
ual runs to a precomputed landing spot and waits for the object but that he modifies his 
actions to keep the image of the object moving at a constant velocity. It is also possible 
that individuals do not compute ( �v ) at all in this model but would reduce a maintained 
value of d2

(
�v
)
/dt2 in a systematic way. As �v increased, they would keep d2

(
�v
)
/dt2 at 

zero [ d2
(
�v
)
/dt2 = constant] (Reed et al. 2010). This is related to what information can 

be derived as a strategy in the system and how that information can be best obtained 
through the dynamics.

This result also holds for a step progression toward such a relationship, 
as explicitly shown by the dramatic change in regard to the point where 
[ d2

(
�v
)
/dt2 = constant] reaches [ d2

(
�v
)
/dt2 �= constant]. Let us suggest that actual-

ized observation of the pattern corresponds not simply to the object’s velocity 
but, instead, to changes in the velocity between individuals at a certain point. In 
other words, the actual displacement ( S ) estimated is given by ( Sl1 = Sl + αd2 ). 
Here, the observed new displacement 

(
Sl1

)
 is equal to the displacement across the 

individuals ( l1 ) plus its relative velocity (α) multiplied by the distance squared (d2) 
from the neighbor. This indicates that the farther an individual is from the neigh-
bor (role model or group heading), when measured at a certain point, the more 
difficult it is for the individual to follow the neighbor because of the greater accel-
eration involved. On this assumption, the results might suggest a strategy such 
as evolvable traits or payoff functions to guide the evolution of these heuristics 
through social learning (see Fig. 2).
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Part 3: Elementary coordination in circadian rhythm (experimental‑based)
One useful strategy of obtaining simplicity through system dynamic looks for cycles 
at all time scales (McGhee and Jain 1972) and aims to show how interacting cyclic 
processes (Collins and Stewart 1993) account for the emergence of new entities (Shaw 
and Kinsella-Shaw 1988; Turvey and Carello 2012), many of which are similarly cyclic 
(Yadlapalli et  al. 2018). The central idea is that Earth’s cycles—geophysical, hydro-
logical, meteorological, geochemical, and biochemical—have interacted to create 
self-replicating living systems that conform to specific cyclicities (Maury et al. 2010). 
This assumption has led us to enquire whether something akin to attunement to the 
environmental 24-h day/night cycles (Maury et al. 2010) may be apparent in an exper-
imental setting of bimanual coordination, a context that has been used to examine 
self-organization in biological systems (Kugler and Turvey 2015).

The present study used two main ways of determining these characteristics and dis-
covering if approximations under certain conditions serve these self-potentials (see 
Additional file  1: 2.1 for more detail). The first involves an increase in the capabil-
ity to self-generate forces along the lines of the roles of the fundamental dimensions 
of environments (temperature embedding in light–dark cycles). To achieve this, the 
experimental setting asks, “Is our system influenced by an ecological feature?” by 
embedding a bimanual coordination task in an ordinary 24-h day–night cycle (5:00, 
12:00, 17:00, and 24:00). The second is tied to observing the availability of an inter-
nally based source (coordination) or sources of force (stability and entropy) within 
dynamical boundaries in systematic ways. The setting asks, “How does our system 
adapt to regular or irregular thermal structures?” by embedding the comparison 
of normal and abnormal day–night circadian temperature effects at dawn (5 a.m., 
approximately when the core temperature reaches its minimum) and dusk (5 p.m., 

Fig. 2 Heuristics through the individual-based model. Based on the relativity defaults set by the model as an 
interconnected condition, the system becomes highly sensitive to small changes in the scalar values (i.e., 
social ties) of individuals at a certain point. The horizontal axis of the normal distribution denotes a scalar [(x
) = social ties in this simulation) from 0 to 1, and the vertical axis represents the probability density at the 
scalar value ( x ). This suggests that if the individual fails to keep the trait (blue area = range from St 0.55→) 
about the nearby individual, the displacement (red bars) will exponentially decay (dotted lines). The Fermi 
distribution (red and blue line) specifies that an available strategy ( x ) will be occupied by the other strategy 

( xf  ) with probability 
[
1+ e−β[x−xf ]

]−1
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approximately when the core temperature reaches its maximum) (Aschoff 1983) (see 
“Methods II (experimental-based model)” for more detail).

Result

A variety of measures (e.g., phase shift, variability, entropy) were examined for evidence 
of entrainment or any influence of the embedding rhythm on stability or attractor loca-
tion (only entropy production was suggested for the main results; see Additional file 1: 
2.3 for the entropy calculation). With respect to experiment 1, the behavioral perfor-
mance (entropy) shows a maximum at 5:00 but has a more clearly defined minimum at 
approximately 17:00 in the day–night cycle, while the core body temperature rhythm 
shows a minimum at 5:00 but has a maximum at approximately 17:00 (see Fig. 3-1).

Regarding experiments 2 and 3, the entropy was affected by the temporal locus during 
the circadian cycle, as well as by the introduction of a heated vest (Experiment 2) and 
an ice vest (Experiment 3); the effects of the thermal manipulation were not identical 

1

2

Fig. 3 1 Entropy production according to circadian cycles. Entropy features [H(x)] of the general tendencies 
in the normal condition [Temp (°C); see Additional file 1: 2.3 for more detail on the entropy calculation]. 
Normalized (vertical axis) = standard score (Z calculation), H(x) = entropy production, Temp = temperature 
(Celsius), circadian points (horizontal axis). See Additional file 1: 2.2.1 for further detail on the results. 2 
Circadian and temperature perturbation-dependent influences. The plot on the left illustrates the heat-based 
relationships between the entropy (horizontal axis) and perturbation (vertical axis) for different circadian 
points (blue line and dots denote 5:00 A.M.[=AM 5], green line and dots denote 17:00 P.M. [=PM 17]). 
The plot on the right illustrates the ice-based relationships between the entropy (horizontal axis) and 
perturbation (vertical axis) for different circadian points. See Additional file 1: 2.2.2 and 2.2.3 for further detail 
on the results
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(see Additional file  1: 2.1.4 for the temperature measure). Even if the same external 
temperature perturbations were given, the influence of the vest was negatively exagger-
ated (increasing entropy) at dawn but positively exaggerated (decreasing entropy) in the 
evening (see Additional file 1: 2.2 for more detail).

The estimated dynamics from the relative phase between two limbs, oscillatory coor-
dination, was affected by the temporal locus during the circadian cycle (see Fig. 3-2). The 
results at this biological scale correspond to a theoretical study that has shown that the 
rate of entropy production is changed when a new energy source is accessed via a non-
equilibrium phase transition process (Frank 2011).

Discussion

The organism may convert its own internal energy so efficiently that it is able to produce 
anything physically possible (England 2013). These results from Experiments 1, 2, and 3 
reflect that accessing a new energy source differs as a function of the circadian cycle and 
that access can be manipulated by a temporary thermal manipulation. Given the very 
widespread use of these features, what types of essential properties are involved in the 
extended emergent elementary dynamics between oscillators? According to researchers 
(Pikovsky et al. 2003), the basic element of the coordination ( φ ) is equal to φ ( xθ1−θ2 = φ ), 
and such an equation resembles the log base x of, which is equal to θ1 − θ2 . Then, with 
respect to the experimental results, the essential foundation of the symmetry dynamics 
between oscillators (ɸ), the preferred elementary frequency of the individual segment of 
x to the other relative phase from the intended phase, is nearly equal to the slightly asym-
metric potential ( xφave−φ0 = �ω ). Thus, if this logic simply keeps going and the outcome 
is observed in terms of the approximate relative stability of this coordination dynamic, 
this logic will have “ x to the variation of the relative phase ( hφ ) is equal to θ1 − θ2 = φ 
multiplied by �ω ”. That is identical to [ xhφ = φ · (�ω) ], and this dynamic potential will 
finally be dependent on 

[
�ω

(
rad ∗ x−1

)
, rad = radian

]
 . Pervasive interconnectedness—

everything is connected with another thing or other things—suggests that behavior is 
adapted to perceiving both the nested environmental properties and one’s own nested 
behaviors—a union that organizes actions on surrounding circumstances (Reed 1996). 
The observation of the direct and robust relationship between biological aspects (body 
temperature and motor synchrony) and an environmental process (circadian temperature 
cycle) may echo the adaptation of our system to the environment (Iberall 1977).

Part 4: Approximated common property of the behavioral patterns
Under these observations, a system may be found to exhibit a variety of hitherto unob-
served dynamical behaviors, including cultural evolutionary characteristics and the 
coexistence of multiple search strategies (Arena et  al. 2018). This study proposes that 
the features investigated are a particularly appropriate assumption in terms of obtaining 
simplicity from complexity.

The expression h(x) represents our way of modeling that denotes wherever and when-
ever the evolutionary system is observed. This model takes (x) and inputs (x) into (s) 

(2)h(x) = m
(
s
(
x−1

))
, x−1 → s

s
(
x−1

)

−−−−−−→ m
m
(
s
(
x−1

))

−−−−−−−−→
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and obtains (s(x)) , and then the model inputs that into the (m) and finally takes m(s(x)) . 
Going back to the insight by researchers (Mahner and Bunge 1997; Turvey 2018), related 
to the minimal starting point for understanding any system as a function of interest at 
any level of interest (see Eq. 1), (s), this includes the collection of all parts of elements 
[C(s)] and comprises all other things influencing them [E(s)], even the internal struc-
ture of the system [S(s)]. Thus, we input (x) as arranged as 

(
x−1

)
 so that it somehow pro-

vides us with intuition about a system’s fundamental properties (s) . This property and 
the inputs into function (m) help us get to the point of understanding any system based 
on the system of interest at any level of interest.

As we take this composite function, it models a system that starts with individual seg-
ments (x) as the input, and it shows the minimal starting point of the system (s) that will 
be dependent on the relative individual distance. Thus, how should a system that can be 
identified or predicted (h) be related to how it depends on the individual segments in 
a given context? (Melchers and Beck 2018). The fundamental properties demonstrated 
may be able to create a useful system dynamics reference so that this functional pattern 
can be applied to various phenomena (see Fig. 4).

Oddly enough, those curiosities might be able to have the same general answer: crea-
tion of sophisticated functions from simple elements. There is possible evidence for the 
association of this property when we compute an approximation of its sensitivity to ini-
tial conditions; staying close can show the possible entity as a function of the system’s 

Fig. 4 Schematic illustration of the evolutionary understanding of the behavioral property. The plot 
represents the state of the system λ(ɸ) (one arbitrary cycle from − 1.0 to 1.0) over time (horizontal axis). The 
green line indicates the damping force from model 1 [decay at a maintained value of d2

(
�v
)
/dt2 )] between 

the focal individual and neighbors (or role individual) over time. The contour (black ~ white) represents the 
24-h circadian process as expressed by [π/2 = 5:00, π = 12:00, π3/2 = 17:00, and (00:00)] according to the 
optimized value of the system’s state with arbitrary units of − 1 to 1. The dotted lines show the observations 
from model 2 (experimental results). The black line denotes the temperature (T) process according to the 
circadian cycle. The blue line and shade (distribution) show the observed normal states of the biological 
system according to the circadian temperature cycle. The red line and shade (distribution) denote the 
observed abnormal states in the perturbed circadian temperature conditions. The dots surrounded by yellow 
colors (Response) denote plausible evidence for the association of this property. The crucial variable, which 
can intuitively be set in both dynamics, can simply be considered as the rate of change between the objects 
arranged according to a high-sensitivity rule. The results above describe a complex behavior with a divided 
phase ( �ω ) space in which areas of stability are surrounded by confusion. This implies that although their 
initial states are almost identical (in a comparison of the middle left area of the plot), the response becomes 
remarkably different with iteration of n times
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own unique set of behavior in the long-time limit [ � = lim
n→∞

(
rnk
)1/n ]. Here, logic can set 

the object’s crucial variable ( rnk  ) that causes the different value in both dynamics to be 
considered simply ( 1

/
n ) arranged in certain rules (i.e., exponential). This function 

reflects that the sort of highly sensitive components was associated with a rate of change, 
which increased or decreased at a certain point (Rosenstein et al. 1993) by measuring 
the contraction (stable system) or expansion (chaotic system) near the orbit of distance 
[ d(x0, x0 + ε) ] during the next iteration of distance [ d

(
f (x0), f (x0 + ε)

)
 ] (see Fig. 4 dots 

surrounded by yellow colors [Response]). That is, the simple rules in regard to what the 
dynamics provide as the primary characteristics that show the simple function can serve 
as the basic principle to use when investigating various patterns (Mead 2017).

Conclusion
One type of logic has focused on the orderly systems underlying the perfect relation-
ships of one point to another (Gaskell and Laughlin 2017). That is to say, there is a direct 
connection owing to the effect that arises directly from a cause. It follows that if we 
know the present state of the system, the system can fully determine its past and future 
state. Although this approach has proven to be a very good means of approximation for 
describing reality in various fields, the real world in which we actually live is not always 
covered by these principles (Lear 2012). Most of one’s experience might not be due to 
this type of direct relationship. An important concept for the system, i.e., iterating a sim-
ple function, even generates the irregular geometric patterns we see in nature from such 
a structure (Rian and Asayama 2016). This indicates that there can be an output greater 
than the sum of the constituting parts due to synergetic relations or less than the sum of 
its individual components due to the relationships with interference (Haken 2012).

Regarding this assumption behind the simulations which estimated the possible prin-
ciples of affirmative evolutionary capabilities of a system (Edelman 2016), this study 
addresses the issues related to the identification of dynamic systems and suggests how 
determining the basic principles of a collective structure may be key to understanding 
complex behavioral processes. Distinct approaches (theoretical, modelling, and experi-
mental) were used in an effort to understand how to recognize the basic feature through 
the dynamics of the system. The condition leading to the behavioral property under 
these different perspectives suggests that it is not reliant on an individual lodged in the 
corner of the system. Rather, if the fundamental condition is in place, the dynamics of 
the system falls into the same rules (Iberall and Soodak 1987) that are estimating the 
pattern (Rosen 1985). Our validation still needs to be polished against what happens in 
various fields and then further extending the model, but in general, the approaches and 
mechanisms achieved here could be useful for researchers and those who need to under-
stand dynamics in phenomena itself.

Methods I (agent‑based model)
The model first considers the agents try to move toward somewhere while steering with 
other individuals in the group. Thus, each has its position, velocity, and exploration, 
which are initialized to values randomized within specified continuous space. However, 
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at the same time, their pattern of behavior depends not only on the autonomous individ-
uals’ initial state but also on its external states. In other words, to control which agents 
interact, when they interact, and how they interact, the mechanism holds internal traits 
as a tradeoff (between the individual velocity and group velocity) and external traits as 
a network characteristic (social ties multiplied by a mutation rate). The rules and pro-
cesses in the artificially modeled structure describe an individual’s homogeneous drives, 
and the mechanism behind this process is based on the social learning in which success-
ful strategies are propagated through imitation (see Additional file 1: 1.3 for the model 
variables).

Operating principle

The agents are physically related to each other on some spatial representation allowing 
them to move anywhere in the space. The set of n-tuples of a real number, denoted by 
R
n , is called n-spaces [ x = (x1, x2, . . . , xn) ∈ R

n ]. A particular n-tuples in Rn is a point 
which called the coordinates, components, or elements of x . This is one of the stand-
ard ways in which the agents can continue to move in the space. The agents then move 
within the boundaries of the plane steering toward somewhere.

where the �a is the group’s heading and �b is each agent’s ( i ) coherence toward the center 
of the group. The order ( �u ) is symmetric because all the agents are identical; thus indi-
viduals are naturally heading together in a certain direction, while at the same time 
maintaining a certain distance from each other as their inherited survival strategies (Jad-
babaie et al. 2003).

The model, then, includes another operation with respect to the individual’s current 
movement ( �v ) written simply by ( �ω = �u+ �v ). That new quantity of �ω is the sum of �u+ �v , 
where the vectors stay away from the origin. The way we define this is that each vector 
represents a certain movement; a step with a certain distance and direction in space. If 
we take a step along the first vector of the �u , and then a step in the direction and distance 
described by the second vector of the �v , the overall effect is just the same as if we had 
moved along the sum of those two vectors to begin with (see Fig. 5).

(3)�u = �aavg + �bi, �aavg =
∥∥aavg

∥∥ ∗ �davg , �bi =
∥∥bi

∥∥ ∗ �di

Fig. 5 Schematic representation of the operation [coordinate system: î  (horizontal axis) and ĵ  (vertical axis)]
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The first quantity here (green line) has the coordinate ( �u =
[
4

1

]
 ), and the second 

quantity (blue line) has the coordinate ( �v =
[
1

2

]
 ). When we take the sum of the two 

quantities, we can see a four-step path from the origin to the tip of the second quantity: 
move 4 to the right and 1 up, then move 1 to the right again and 2 up. To rearrange these 
steps, first move 4 + 1 to the right, then move 1 + 2 up; the new quantity (black line) has 
coordinates 4 + 1 and 1 + 2 from the origin. Exhibited in this list-of-numbers conception 
is a matching up of their numerical terms, and an adding them both together 

( �ω =
[
4 + 1

1+ 2

]
=

[
5

3

]
 ). With this fundamental process, especially, we see that the sec-

ond quantity of �v contains the individual’s trait (agent-self interactions: agents can inter-
act with themselves), based on its condition holds;

where the function assumes that the attribute of the component is conditional upon the 
value yield in the other direction (−), if the length of the magnitude ‖vi‖ is greater than 
the other length ( 

∥∥vavg
∥∥ ). This trait is implemented according to quantity as follows:

where the �vi is the individual’s velocity represented by the length of the individual’s mag-
nitude ( ‖vi‖ ) with the direction of individual ( �di ). The �vavg is their average velocity which 
includes the entire population of N individuals’ navigation. The result of the �vi and the 
�vavg produces a new quantity �vinew written simply as ( �v → �vinew = �vi + �vavg ). Going back 
to the conditional (IF) assumption with this individual quantity, if the object ( �v ) faces the 
parameters ( �u ) with the states of their quantities ( ‖vi‖ and 

∥∥vavg
∥∥ ), the condition set pro-

duces an opposite direction (±) depending on its norm as follows:

where �ω is a new position vector of the individual updated by the inherited trait �u with 
the individual’s current movement �v . This is a linear combination (or inverse transforma-
tion = 180° counterclockwise), something that takes in inputs and spits out an output for 
each one;

(4)�v → �f → f
(
�v
)
, f

(
�v
)
=

{
�v (+) if f (�vi�) <

∥∥vavg
∥∥

�v (−) if f (�vi�) >
∥∥vavg

∥∥

(5)

�vi = �vi�∗�di, �vi� =
√
v2ix + v2iy,

�di =
(
vix, viy

)
√
v2ix + v2iy

, �vavg =
1

N

N∑

i=1

�vi =
∥∥vavg

∥∥∗�davg

(6)f (�vi�) <
[
vavg

]
→ �ω = �u+ �v

(7)f (�vi�) >
∥∥vavg

∥∥ → �ω = �u+
(
−�v

)

[
xin
yin

]

︸ ︷︷ ︸
input

→ f →
[
xout
yout

]

︸ ︷︷ ︸
output

=
[
0 1

1 0

]

︸ ︷︷ ︸
matrix

[
x
y

]

︸︷︷︸
vector

→ f →
[
0 1

1 0

]

︸ ︷︷ ︸
matrix

[
x
y

]

︸︷︷︸
vector

or

[
0 −1

−1 0

]

︸ ︷︷ ︸
matrix

[
x
y

]

︸︷︷︸
vector
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Imagine that every possible input vector multiplied by the matrix moves over to its 
corresponding output vector multiplied by the matrix (or inverse) without becoming 
curved and that the origin must remain fixed in place; what the coordinates are is deter-
mined by where each basis vector lands (see Fig. 6).

This refers to the fact that the model’s basic pattern of group behavior depends on the 
value of �v with a localized view of the initial conditions of the randomly initialized point; 
increasing the individual’s quantity �v underlying the group’s initial condition �u causes 
their portrait to diverge (dotted blue line) or converge (dotted red line). Such a funda-
mental operation allows us to reach every possible point (not as an arrow but actually as 
a single point) in the plane, considering every possible linear combination that we can 
obtain from the two dimensional quantities.

Based on these functions, the element �v then contains a more detailed algorithm of 
how the individual’s new position was implemented in which a subset holds that (i) the 
zero vector belongs to �v , and (ii) vectors and any multiplication of scalars is also in �v . 
Such a mechanism is dependent on quantity as follows.

Movement characteristics (internal source)

First of all, the new position dynamic is augmented by the designated trade-off value 
(Woodworth 1899) of the individual velocity-group heading [IGT: individual’s velocity up 
( �vi ) resulted in a loss of group heading ( �vavg )] as follows;

where �vi is the velocity of each individual, �vavg is the average velocity about group head-
ing, and the value of k is a scalar that controls their trade-off. For example, the product 
of a �vi by a scalar k is a vector 

∥∥k
∥∥�vi with magnitude 

∥∥k
∥∥ times the magnitude of ‖vi‖ and 

with direction �di , the same as or opposite to that of �vi , according to whether k is positive 
or negative [if k = 0 (null vector) 

∥∥k
∥∥�v has zero magnitude and no specific direction]. 

This means that every new position vector will be a combination multiplied by the scalar 
[ (c1 = 1−

∥∥k
∥∥), (c2 =

∥∥k
∥∥)];

[
xout
yout

]
=

[
1�x
1�y

]
or

[
−1�x
−1�y

]

(8)�viinew =
(
1−

∥∥k
∥∥) ∗ �vi +

∥∥k
∥∥ ∗ �vavg , k ∈ [0, 1]

Fig. 6 Schematic representation of the operation [coordinate system: î  (horizontal axis) and ĵ  (vertical axis)]
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and, the mechanisms obtain (see Fig. 7):
where the different angles of the arrows are from �vinew and the spaces inside the arrows 

are from the multiplied scalar ( 
∥∥k

∥∥,
∥∥k

∥∥ ∈ [0, 1] ). This gives us a global view so that we 
can conceptualize the list of quantities in a visual way and thereby simplify and clarify 
basic operational patterns.

Network characteristics (external source)

The model then includes another characteristic for dealing with more or less distinct 
patterns of behavior. In social practice, just as individuals are more likely to change their 
decisions depending on the influences surrounding them (Demsar and Bajec 2013), so 
the individual’s new quantity ( �v ) holds its network characteristics as given;

where �vs is a vector with a length vs and direction �ds as a function of the network density (ND). 
The network density arises from its social ties (Santos et al. 2006) based on the nodes and cal-
culated by its actual connection (AC) with the potential connection (PC) of the network.

where the network density ( ‖vs‖ ) describes the potential connections in a network that 
are actual connections ( AC/PC ). The potential connection ( PC = N (N − 1)/2 ) is a con-
nection that could potentially exist between two individual regardless of whether or not 
it actually does (see Additional file 1: 1.1 for more detail). These small linear contribu-
tions to their dynamics, and this structural instability can be interpreted as the network 
characteristics being influenced by the exploration rate ( k ′ = scalar), which corresponds 
to a mutation term in genetics given as:

(9)
c1

[
4

1

]
± c2

[
1

2

]
=

[
c14
c11

]
±

[
c22
c22

]
=

[
x1
x2

]

4 ∗ c1 ± 1 ∗ c2 = x1, 1 ∗ c1 ± 2 ∗ c2 = x2

(10)�viiinew =
((
1−

∥∥k
∥∥) ∗ �vi +

∥∥k
∥∥ ∗ �vavg

)
+ �vs, �vs = �vs� ∗ �ds

(11)�vs� = ND = AC/PC , AC = (2 ∗ t)/N , PC = N (N − 1)/2

�viiiinew =
((
1−

∥∥k
∥∥) ∗ �vi +

∥∥k
∥∥ ∗ �vavg

)
+ �vss, �vss = �vss� ∗ �dss

(12)�vss� =
[∥∥k ′

∥∥(1− �vs�)− 2
∥∥k ′

∥∥�vs�
]
, k ′ ∈ [0, 1]

Fig. 7 Schematic representation of the operation [coordinate system: î  (horizontal axis) and ĵ  (vertical axis)]
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where k ′ controls how fast the transition function propagates in the network, and the 
new position vector considers its network density as another quantity [ (c3 =

∥∥k ′
∥∥) ]. For 

example, as previously:

The new position is then:

In the presence of the network density, the system settles down into a state with a 
more pronounced increasing (or decreasing) mutation rate in every update step, and it 
yields (see Fig. 8):

Interdependency between the two traits

With these implementations, instead of the widespread extension underlying the com-
bination, the model proposes to adopt an existing possible interconnected relationship 
between the network and its movement characteristics. Let us think about simple inter-
dependency between the two components (trade-off between individual velocity and 
group heading as an internal, network density multiplied by mutation as an external). 
If the individual’s tendency is very remote from the group’s purpose, its mutation in the 
system will not propagate to the individuals, or vice versa. For this application, the new 
position mechanism assumes that the social network characteristics ( ‖vss‖ = scalar) are a 
denominator applied by the index of difficulty ( id = scalar) as a numerator.

c1

[
4

1

]
± c2

[
1

2

]
=

[
c14
c11

]
±

[
c22
c22

]
=

[
x1
x2

]

(13)4 ∗ c1 ± 1 ∗ c2 = x1, 1 ∗ c1 ± 2 ∗ c2 = x2

[
x1
x2

]
± c3

[
2

1

]
=

[
x1
x2

]
±

[
c32
c31

]
=

[
x11
x22

]

(14)x1 ± 2 ∗ c3 = x11, x2 ± 1 ∗ c3 = x22

�viiiiinew =
[(
1−

∥∥k
∥∥) ∗ �vi +

∥∥k
∥∥ ∗ �vavg

]
∗ (�vid�/�vss�)

(15)�vid� = 2D

W
, �vss� =

[∥∥k ′
∥∥(1− �vs�)− 2

∥∥k ′
∥∥�vs�

]

Fig. 8 Schematic representation of the operation [coordinate system: î  (horizontal axis) and ĵ  (vertical axis)]
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where ‖vid‖ is the scalar as a function of the ratio between the two objects [2D = size of 
the trade-off ( k ) between two objects about �vi and �vavg ] divided by the width of the object 
[W = arbitrary value corresponding to the individual’s size or reputation. For example, 
when 

∥∥k
∥∥ is 0.1 applied to the 

(
1−

∥∥k
∥∥) ∗ �vi +

∥∥k
∥∥ ∗ �vavg , the 2D becomes large (i.e., 

0.8); on the other hand, when 
∥∥k

∥∥ is 0.4, the 2D becomes small (i.e., 0.2)]. This leads to a 
simple interpretation linking the vector as follows;

and, the mechanisms yields (see Fig. 9):
Notice that the combination of these arrows refers to this model’s fundamental feature. 

The characteristics of every rule and process that are applied (or will be applied) in this 
model must be within this functional dynamic. This provides an excellent way of conceptu-
alizing many lists of individuals in a visual way, which can clarify patterns in mechanisms. 
It also shows a global view of what certain operations do to describe how an individual is 
being manipulated in space using numbers that can be run through a computation.

The model now considers an adoption probability which is given by an estimate of �vinew 
by the individuals. Indeed, as each individual may not know the exact value of the trait that 
has adopted the other’s �vinew , this model yields that they can estimate the value at every 
schedule of each generation via the comparison given.

where p is the probability acceptance of the role model for imitation, πf  is a payoff 
(velocity) of the focal individual, πr is a payoff of the role individual, e denotes the expo-
nential, and ω is the intensity of the selection ( ω < 1 = weak selection, ω → ∞ = strong 
selection). The focal individual imitates the strategy of the nearby role individual, com-
paring its new position vector (large �π = velocity difference large, small �π = velocity 
difference small), and then the focal individual chooses to imitate the strategy of the role 
individual (see Additional file 1: 1.2 for different implementation cases for the π).

(16)c4

[
x1
x2

]
=

[
c4x1
c4x2

]
=

[
x111
x222

]
= �viiiiinew ,

[
x1
x2

]
= �viinew , c4 = �vid�/�vss�

(17)p =
[
1+ e−ω�π

]−1
, πr − πf = �π

∣∣
πr=rolemodel

Fig. 9 Schematic representation of the operation [coordinate system: î  (horizontal axis) and ĵ  (vertical axis)]
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Methods II (experimental‑based model)
The present model used two main ways of determining these characteristics and discover-
ing whether approximations under certain conditions serve these self-potentials. The first 
involves an increase in the capability to self-generate forces along the lines of the roles of the 
fundamental dimensions of environments (temperature embedding in light–dark cycles). To 
achieve this, the experimental setting asks, “Is our system influenced by an ecological fea-
ture?” by embedding a bimanual coordination task in an ordinary 24-h day–night cycle (5:00, 
12:00, 17:00, and 24:00). The second is tied to observing the availability of an internally based 
source (coordination) or sources of force (stability and entropy) within dynamical bounda-
ries in systematic ways. The setting asks, “How does our system adapt to regular or irregu-
lar thermal structures?” by embedding the comparison of normal and abnormal day–night 
circadian temperature effects at dawn (5 a.m., approximately when the core temperature 
reaches its minimum) and dusk (5 p.m., approximately when the core temperature reaches 
its maximum) (Aschoff 1983) (see Additional file 1: 2.1 for more detail).

Circadian rhythm of temperature (external source)

The core cycles of a biological system are influenced by temperature, with 24-h light–
dark oscillation (called circadian rhythm), as well as by biochemical, physiological, or 
behavioral processes that persist under constant conditions with a period length of ~ 24 
(Soodak and Iberall 1978). Presumably, due to inputs to the thermoregulatory centers 
from the body core (Refinetti and Menaker 1992), the circadian rhythm of biology shows 
a minimum at 5:00 (when core body temperature is rising most rapidly) but has a more 
clearly defined maximum at about 17:00 in the daylight (when core body temperature is 
falling most rapidly) cycle (Moore 1995) (see Fig. 10).

This circadian change (in core temperature) is most likely due to the rhythmic input 
from the suprachiasmatic nuclei (SCN) acting upon the hypothalamic thermoregulatory 
centers and altering the thresholds of cutaneous vasodilatation and sweating (Krauchi 
and Wirz-Justice 1994). Specifically, melatonin appears to contribute to this change, as 
its rate of secretion increase in the evening, and this increase promotes a fall in body 
temperature via cutaneous vasodilatation (Cagnacci et al. 1997).

As the information is accessible, people are familiar with how such a process can 
fluctuate and how it can be explained by the interaction between the internal (homeo-
static) and the external (circadian) situations (Aizawa and Cabanac 2002). There is ample 
evidence of the effect of the ecological climate on various aspects of the process. Heat 

Fig. 10 Representation of the circadian rhythm. Left = circadian process oscillation; right = temperature 
process oscillation between the circadian temperature (horizontal axis) and the body temperature (vertical 
axis). Note: this is a normalized rhythm despite the fact not all rhythms are identical. Our core body 
temperature is roughly linked to this cycle, with various hormones being released at certain stages during the 
rhythm because our body temperature reflects energy levels
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exchanged with the environment by means of convection and radiation allows a gradi-
ent to be formed between the body core and temperature (Borb and Achermann 1999; 
Walther et  al. 2002). The rhythm in the core temperature produced by this change is 
generally promoted by other rhythms, including the body clock, sleep, and physical and 
mental activity, raising the possibility that the disruption of circadian rhythms can con-
tribute to complications in the human system (Maury et al. 2010). These changes in the 
interior temperature in the body, as opposed to the peripheral (core temperature)—both 
in animals and humans—are mainly due to circadian rhythmic changes in the rates of 
ecological impacts (Edholm et al. 1973).

However, given that precise control of the internal substance (SCN) as a generator 
of biological circadian rhythm is unclear, the circadian rhythm of the core body tem-
perature appears to be generated by periodic variation in heat production and heat loss 
(Waterhouse et  al. 2005). For instance, changes in heat loss via convection and radia-
tion are primarily caused by variations in skin blood flow, with consequent changes in 
skin temperature. In particular, when the subject is performing mild activities, where a 
decreased temperature is not matched by a thermal load, it has been shown to be very 
effective in describing the thermal responses to activity carried out at different times of 
the day (Aschoff et al. 1972).

When one considers the submaximal activity changes following a brief period, say, at 
a certain temperature level (Aldemir et al. 2000), one may see initially that the response 
to the same amount of moderate activity in the minimum circadian rhythm differed 
from that in the maximum circadian rhythm. The mechanisms responsible for these dif-
ferent temperatures of the core and musculature during daylight cycles, as a result of 
normal or non-normal ambient temperatures, will alter a range of performance factors, 
including the thermoregulatory response to activity. These results fully substantiate the 
predictions based on the hypothesis describing a circadian rhythm in thermoregulatory 
responses and indicate that this hypothesis applies to biological adaptation regarding 
certain ecological variables.

Elementary coordination (internal source)

Formation and retention refer to propriospecific information about the states of the 
muscular-articular links, and the dynamical criteria of the stability pattern constrain 
the patterns or characteristics. To be specific, let us consider a qualitative physical 
system such as stiffness, damping, and position over time in a dynamical mass-spring 
system as given.

Here, m is mass, b is friction, and k denotes the stiffness. The variable t is time, χ 
denotes the position, χ ′ is velocity, and χ ′′ represents acceleration. In physics, because 
damping is produced by a process that dissipates the energy stored in the oscillations, 
the interplay between input and damping approaches a stationary fixed point in the 
long-time limit.

(18)f(t) = mx′′ + bx′ + kx

(19)mx′′ + bx′ + kx = 0
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Such systems possess a static equilibrium point, which is called a point attractor 
(Kugler et al. 1980) (see Fig. 11). The property of this dynamic has been applied not 
only to a physical system but also to descriptions of the human neuromuscular level 
(Kugler and Turvey 2015). This function involves an investigation of the intact move-
ment of a limb oscillator in terms of muscle-joint kinematic variations (kinematic 
position, velocity, acceleration) over time. When we are asked to swing two limbs 
comfortably, this can be characterized by the pendulum’s dimension (Kay et al. 1987), 
namely, simplifying the point attractor while restricting it to certain domains of phase 
space [(θ2− θ1 ≈ 0 ), ( θ2− θ1 ≈ π)]. In this equation, with the phase difference, 
θ2− θ1 ≈ 0 denotes a condition of nearly synchronized in-phase, and θ2− θ1 ≈ π 
indicates that this in an anti-phase. The observed relative phase or phase relation (φ) 
between two oscillators at φ ≈ 0° (in-phase), or φ ≈ 180° (anti-phase) have been mod-
eled as the point attractors in our limb system, as they are purely stable patterns (Tur-
vey 1990).

In the observed relative rhythmic segments patterns, the in-phase φ ≈ 0 condition 
is more stable than the anti-phase φ ≈ π condition. Inspired by a number of studies 
on the 1:1 frequency locking of the left- and right-hand phase defined as φ = (θL − θR)

—the difference between the left (L) and right (R) phase angles (φ)—has led to the 
identification of important invariant human system features (Kelso 1984).

In this equation, φ is the phase angle of the individual oscillator. In addition, α and 
b are coefficients that denote the strength of the coupling between the two oscillators. 
The relevant regions of the parameter space allow the potential V(φ) ; the negative 
signs in front of the coefficients simplify the equation of motion. A relative 1:1 fre-
quency-locked coordination phase [ V(φ) ] is determined by the differences between 
the continuous phase angle [ −α cos (φ)− b cos (2φ) ] of the oscillator’s two compo-
nents: the stability of the point attractor can be varied by varying the pendulum’s 
dimensions (see Fig. 12).

(20)V(φ) = −αcos(φ)− b cos(2φ)

Fig. 11 Simulation of the different mass-spring attractors. The damped exponential decay of the dotted 
equals cos (2π t)exp(−t) , and for the solid line cos (8π t)exp(−t) . Log lines indicate an embedded invariant 
property in terms of the relation between systems’ attractor (solid blue line) and damping potential (dotted 
red line). V volts, au arbitrary unit. Plot of the inset denotes an undamped case
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This function indicates that the minima of the potential are located at φ = 0, and 
that φ = ±π (Haken et al. 1985). Given this scenario, the function can be estimated 
in terms of how the potential will change in shape, as the control parameter (energy 
cost) increases. Based on the observed mechanism for the point attractor with a sim-
ple function, the present model proposes the in-phase bimanual rhythmic coordi-
nation synchrony pattern as a particularly well-suited physical source. This allows a 
useful reference for system stability coordination tasks in which this functional pat-
tern can be applied to all human movement, muscles, and even a neural network. 
Actual intersegmental coordination, however, is additionally shaped by the contin-
gencies of adjusting to environmental vagaries. How these extrospecific requirements 
and information types are incorporated into the physical stability patterns can be 
assumed by the level of symmetry coordination (Amazeen et  al. 1998). In order to 
harmonize the effects of motor stability toward environmental symmetry, this study 
investigates the following elaboration.

Symmetry breaking in bimanual coordination dynamics

The potential [ V(φ) ] extends the described assumption in terms of the differ-
ence between the uncoupled frequencies of bimanual rhythmic components 
[ �ω = (ωL − ωR) ]. Where ω is the preferred movement frequency of the left ( ωL ), 
right ( ωR ) individual. If the relative phase between ωL and ωR were equal ( �ω = 0), 
this pattern would be assumed to be a perfectly identical symmetry. However, the pre-
ferred movement frequencies of the individual oscillators in in-phase are large (i.e., 
function: b/a = 0.5, detuning = − 0.5, or detuning = − 1.5), the expected stability of 
the rhythmical limb oscillation dynamics become greater than equal (see Fig. 13).

Such phenomena of the symmetry breaking must be another fundamental feature of 
the coordinative system (Amazeen et al. 1998). From this dynamic, a different noise of 
the underlying subsystems (neural, muscular, and vascular) can be estimated around 

Fig. 12 Reflection of a potential function. The blue line = the vertical axis, which denotes the energy of the 
function at each averaged relative phase. The horizontal axis indicates the averaged relative phase between 
two limbs from in-phase 0 to anti-phase 3.14 = 180 (− 3.14 = − 180). At the local point 0 and 180 (− 180), the 
function close to those minima (attractors, black balls) and at local point around 90 (− 90), the state is close to 
maxima (repellors, red balls). The red and green lines denote the variation of the potential functions
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an equilibrium point, and this might conceptualize the model when it comes to mak-
ing operational definitions of each category in which the model has to consider the 
variability of the relative phase frequencies between two limbs:

The estimation of two oscillators’ relative phase ( ̇φ ) is captured by the parameter ( �ω ) 
of the preferred movement frequency of the individual segment [ α cos (φ)− b cos (2φ) ] 
with the noise ( 

√
̺ξt  ). Given the equation of the preceding model (grouped as the kin-

ematics of motor stability according to the coordination task of synchronization), such a 
term has been used to capture purely functional dynamics regarding the equilibria and 
is confirmed usually as in the time and temporal difference between an oscillating limb.

Researchers (Treffner and Turvey 1995), conducting experiments in handedness, 
advanced the elementary coordination dynamics. They added two add (sine) terms for 
the coefficients, whose signs and magnitudes determine the degree and direction of 
asymmetry, as follows;

Here, φ̇ indicates a coordination change. �ω refers to a symmetry breaking through 
frequency competition between two limbs. [α sin (φ)+ 2b sin (2φ)] denotes a sym-
metric coupling defined by relative phase of 0 and π attractors (this form of the term 
could be derived as the negative gradient potential V with respect to φ); and the 
[c sin (φ)+ 2d sin (2φ)] terms means added asymmetric coupling attractors with the sto-
chastic noise 

√
̺ξt  . This extended equation refers to the fact that the emergent elemen-

tary dynamics between limbs or limb segments was governed by a slightly asymmetric 
potential of the [c sin (φ)+ 2d sin (2φ)] . That suggests extended collective dynamics of 
the inter-segmental rhythmic coordination of the periodic components.

(21)φ̇ = �ω − α cos (φ)− b cos (2φ)+
√

̺ξt

(22)φ̇ = �ω − [α sin (φ)+ 2b sin (2φ)]−[c sin (φ)+ 2d sin (2φ)]+
√
̺ξt

Fig. 13 Preferred movement frequencies of the individual oscillators. The vertical axis, which denotes the 
energy of the function at each averaged relative phase. The horizontal axis indicates the averaged relative 
phase between two limbs from in-phase 0 to anti-phase 3.14 = 180 (− 3.14 = − 180). The blue line denotes 
the same symmetry; green line denotes the large different symmetry (function: b/a = 0.5, detuning = − 0.5); 
redline denotes even larger different symmetry (function: b/a = 0.5, detuning = − 1.5)
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Thermoregulatory symmetry breaking of the elementary coordination

Inspired by the complementary symmetric and asymmetric influences, the described 
model was applied to investigate the difference between the coupled or uncoupled frequen-
cies of the temperature-rhythmic components between the core body and circadian cycles.

where d is the preferred rhythmic frequency of one (the homeostasis cycle) and another 
(c =  circadian cycle) individual. Whereas b/a determines the relative strengths of the 
fundamental in-phase equilibria, small values of c and d break the symmetry of the ele-
mentary coordination dynamics while leaving their essential coupling characteristics.

In this proposed assumption, the coefficient of the d should be more important, pro-
ducing the empirically observed perturbation in the equilibrium phase state, and then 
the c should be set to zero without loss of generality, given that we cannot manipulate the 
environmental circadian cycle. As one can see, if the coupling between d and c is strong 
( 
∣∣c and d

∣∣ ≈ 0 ), this pattern would potentially be expected to be in perfectly corresponding 
symmetry with the environmental requirement. However, the preferred rhythmic coupling 
of individual oscillators in an in-phase condition becomes a difference ( 

∣∣c and d
∣∣ > 0 ), and 

thus the expected stability or variability of the rhythmical-component oscillation dynamics 
will become greater than equal. Given the preceding assumption (grouped as the kinemat-
ics of motor stability according to the coordination task of synchronization), the equation 
was extended to a novel task in which there are different sources of symmetry breaking 
through thermal variables, as information has not yet been made available about the effects 
of bimanual dynamics in instruction on circadian temperatures.

In this equation, in the bimanual 1:1 rhythmic coordination performed at different 
coupled frequencies, the symmetric coupling coefficients will be not the same. There will 
be an increase in detuning ( �ω ) and a decrease in the relative strengths of the attrac-
tors at 0 and π. However, when it comes to our limiting case of �ω = 0 on the approxi-
mately identical symmetry temperature parameters (core body and circadian cycle), 
what should we expect? The final estimation between the relative phases of two oscilla-
tors ( ̇φ ) will be captured mainly by the parameter of the asymmetric thermoregulatory 
coupling 

[
c sin

(
φ

◦C)+ 2d sin
(
2φ

◦C)] with noise ( 
√
̺ξt  ). From this dynamic, the differ-

ent noise types of the underlying subsystems (neural, muscular, and vascular) around an 
equilibrium point were able to be estimated, suggesting that such phenomena related to 
symmetry breaking may be yet another remarkable feature of the coordinative system.

In sum, this experiment was required to have a condition of in-phase ( φ = 0 ) oscil-
lated simultaneously at the 1:1 frequency locking (the in-phase was suggested for the 

c = circadian temperature cycle, d = core body temperature cycle.

∣∣c and d
∣∣ > 0,

∣∣c and d
∣∣ ≈ 0

(23)φ̇ = �ω − [α sin (φ)+ 2b sin (2φ)]−
[
c sin

(
φ

◦C
)
+ 2d sin

(
2φ

◦C
)]

+
√
̺ξt
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main variable based on the pilot test; see Additional file 1: 2.4 and 2.5 for more detail). 
The same goal using the functional symmetry dynamics of different effectors will be 
influenced by the asymmetric thermal regulation symmetry breaking through both cir-
cadian temperature cycles. Namely, the effect of one of the contralateral homologous 
relative limbs phase might be not identical to the impact of the others. The expected 
stability pattern, from intuition given a different motor, appears to allow the biological 
symmetry dynamic to be understood in the ecological context. This attunement to the 
circadian temperature approach implies an emergent property of the system.
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