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Abstract

Purpose: Large-scale optimization tasks have many applications in science and
engineering. There are many algorithms to perform such optimization tasks. In this
manuscript, we aim at using consensus in multi-agent systems as a tool for solving
large-scale optimization tasks.

Method: The model is based on consensus of opinions among agents interacting
over a complex networked structure. For each optimization task, a number of agents
are considered, each with an opinion value. These agents interact over a networked
structure and update their opinions based on their best-matching neighbor in the
network. A neighbor with the best value of the objective function (of the
optimization task) is referred to as the best-matching neighbor for an agent. We use
structures such as pure random, small-world and scale-free networks as interaction
graph. The optimization algorithm is applied on a number of benchmark problems
and its performance is compared with a number of classic methods including
genetic algorithms, differential evolution and particle swarm optimization.

Results: We show that the agents could solve various large-scale optimization tasks
through collaborating with each other and getting into consensus in their opinions.
Furthermore, we find pure random topology better than small-world and scale-free
topologies in that it leads to faster convergence to the optimal solution. Our
experiments show that the proposed consensus-based optimization method
outperforms the classic optimization algorithms.

Conclusion: Consensus in multi-agents systems can be efficiently used for large-
scale optimization problems. Connectivity structure of the consensus network is
effective in the convergence to the optimum solution where random structures
show better performance as compared to heterogeneous networks.

Keywords: Large-scale optimization, Complex networks, Continuous opinion
formation, Consensus, Scale-free networks, Small-world networks
AMS subject classification: 15A04, 54A20, 60J20, 92D25
Background
Networks are everywhere and we confront many networks in our daily life; they are

practically present where any kind of information is transmitted or exchanged. Net-

works such as the Internet, the World Wide Web, engineering, social, biological and

economical networks have been subject to heavy studies in the last decade and many

applications have been developed based on network science Albert & Barabasi (2002,

1999; Barabasi & Albert 1999; Boccaletti et al. 2006; Newman & Watts 2006; Newman
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2003; Newman & Park 2003; Strogatz 2001; Watts & Strogatz 1998). The progress in

network science accelerated after the seminal work of Watts & Strogatz (1998) on

collective behavior of small-world networks Watts & Strogatz (1998) and Barabasi &

Albert (1999) on scale-free graphs (Barabasi & Albert 1999). Watts and Strogatz discov-

ered that many real-world networks have small-world property in that their characteristics

path length scales logarithmically with network size (Watts & Strogatz 1998) – a property

that is observed in random networks. At the same time, these networks show high levels

of transitivity (clustering coefficient) (Watts & Strogatz 1998) – much higher than corre-

sponding random networks. Furthermore, many real networks from different disciplines

were shown to have a power-law degree distribution (Barabasi & Albert 1999); the prob-

ability of having a node with degree k is k-γ with γ being in the range 2–3. Real networks

have been shown to have more complex properties such as motifs (Milo et al. 2002) and

community structure (Girvan & Newman 2002). These structural features influence

dynamics and functionality of networks. For example, synchronization and consensus

properties of networks largely depend on their structure (Belykh et al. 2005; Lu et al. 2004).

The most striking pattern of networked structures appear when a number of agents

(each with simple behavior) interact leading to complex behaviors as a result of collective

motion. Synchronization of interacting agents - as the most striking form of collective

behavior - has many applications in science and engineering. For example, techniques

available in network theory can be used for efficient distrusted inference in sensor

networks (2007; Scutari et al. 2008). In this work we used tools available in network

science to perform a numerical optimization task. Optimization is an approach that

iteratively improves the performance of a system, which is formulated as a single

standard measurement equation called cost (or objective) function.

In order to use network theory for solving an optimization task, we used the concept

of consensus formation in the opinions of multi-agent systems. Let us consider a

network of agents where a (discrete or continuous) opinion value is associated to each

agent. Agents can influence each others’ opinions through the connections existing

between them, i.e., the edges of the network. Considering some simple update rules

and if certain conditions are met, the agents can reach a consensus in their opinions

through a number of opinion updates (Kozma & Barrat 2008; Carletti et al. 2006). In this

work we considered the evolution of continuous opinions based on the modified version

of bounded confidence model (Deffuant et al. 2001), which has been extensively studied

in recent years (Gandica et al. 2010; Weisbuch 2004; Urbig et al. 2008). The previous stud-

ies of continuous opinion formation have been mainly performed considering uniform

agents (Gandica et al. 2010; Weisbuch 2004; Urbig et al. 2008). However, in reality the

agents are diverse in their wealth and social status, and hence, have diverse influence on

others (Holyst et al. 2001; Lewenstein et al. 1992; Jalili 2013a; Jalili 2013b). Therefore, we

associated specific weight for each agent resulting in faster consensus.

The paradigm proposed in this manuscript was applied on a number of benchmark

problems. We first considered a simple function with many local optima and showed that

the proposed optimization strategy could successfully find the optimum. We then applied

the method on a number of benchmark problems from CEC 2010 competition bench-

mark set (Tang et al. 2009). We compared the performance of the proposed consensus-

based optimization approach with that of a number of classic optimization methods

including genetic algorithms, differential evolution and particle swarm optimization.
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Methods
Optimization through consensus in the network

The paradigm we have proposed for large-scale optimization task is based on consen-

sus in networked structures. In opinion formation models, there is a population of

agents, each with a (discrete or continuous) opinion value representing its information

about a subject (Deffuant et al. 2001; Gandica et al. 2010; Weisbuch 2004; Urbig et al.

2008). The term opinion is not easy to define in reality; however, it can be considered

as a discrete or continuous value expressing the individuals’ degree of desire or prefer-

ence. This opinion is often represented as a real number when the model is unimodal

or as a vector of real numbers when the model is multimodal. In this paper we

aimed at optimizing an objective function, and therefore, each agent will have an

opinion value containing all the input parameters of desired objective function, i.e.,

a multimodal model.
Opinion formation in multi-agent systems

The agents update their opinions as a result of interactions with their neighboring agents.

Consider two neighboring agents i and j with opinions as xi and xj, respectively. Their

opinions at time n + 1 will be a function of their previous opinions, i.e. xi(n + 1) = f1(xi(n),

xj(n)), xj(n + 1) = f2(xi(n), xj(n)). If certain conditions are met, after a number of updates

in these values, the agents can reach a consensus in their opinions (Kozma & Barrat

2008; Carletti et al. 2006). The collective behavior of the agents over complex networks

largely depends on the structural properties of the networks (Amblard & Deffuant

2004), and minor modification in the structure of the network can have drastic effects

on the behavior of opinion formation (Nardini et al. 2008).

There are a number of rules for modelling opinion formation in complex networks.

For example, considering discrete opinions, in the voter model, randomly selected

agents exchange their opinions by that of one of their neighbours (Krapivsky & Redner

2003). The agents might influence their neighbouring agents to change their opinions

based on their strength and the neighbours’ threshold (Leskovec et al. 2006). In the

evolution of continuous opinions on a network, the opinions of two connected agents

are updated if their difference is less than a threshold, i.e. the agents have evolving

opinions (Deffuant et al. 2001; Amblard & Deffuant 2004; Lorenz 2007; Kurmyshev

et al. 2011; Hegselmann & Krause 2002; Guo & Cai 2009).

In this work we considered a specific form of continuous bounded confidence model

in which each agent has an opinion in the range [−1,1] - denoted by opinion space –

and update its opinions based on a specific rule (Deffuant et al. 2001; Fortunato et al.

2005). First, each agent takes a random value from opinion space. Then, at each pro-

ceeding step, each agent finds its best-matching neighbour, i.e., the one that optimizes

the objective function furthest among the neighbours, and then updates its opinion

value with this best-matching adjacent. The update rule for agent i is as

(
xi nþ 1ð Þ ¼ xi nð Þ þ μ xj nð Þ−xi nð Þ� �
if f xi nð Þð Þ > f xj nð Þ� � ; i ¼ 1; 2;…;N ;

j ¼ argmin;k f xk nð Þð Þ ; k ∈Ni

ð1Þ
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where f is the desired cost (or objective) function to be optimized, N is the network size

and Ni is the set of neighbours of agent i. μ is the convergence (or influence) parameter,

which often takes a value between 0 and 1. This parameter controls the speed of

convergence in such a way that small values of μ corresponds to slow but smooth

convergence, while the large values of μ corresponds to faster but wavy convergence.

To some extent, the above model for opinion formation imitates the behavior of

agents in real social networks. A person may know many individuals in the society;

however, he/she is only influenced by his/her closest friends (i.e., neighbors in the

network). In many cases, individuals get the maximum influence through their best

(closest) friends and try to make themselves similar to them, i.e., making their opinion

closer to their closest friends. People try to behave like their best friends for

establishing and maintaining their friendships and they influenced by them more than

the others in their life. Sometimes these changes will happen because people want to

preserve their connections and friendships and they will act or behave like their close

friends (Barry & Wentzel 2006). They project their own attitudes and habits to their

friends. Furthermore, research showed that, in general, the influence of the very best

friend approximately is equal or comparable to the influence of multiple friends

(Berndt & Murphy 2003).

In our model, each agent finds one of its neighboring agents that have the best value

in the objective function – which is denoted by best-matching neighbor. For example,

if the objective function is an energy function; the neighbor with minimal energy func-

tion is selected. The agents then update their opinions using equation (1). It has been

shown that considering proper connection weights can enhance the consensus proper-

ties of the network, i.e., the network reaches to consensus in a shorter time (Jalili

2013a; Jalili 2013b; Yang et al. 2009; Brunetti et al. 2012). Therefore, we also took

proper weights while updating the opinions. The update equations read

(
xi nþ 1ð Þ ¼ xi nð Þ þ μ

f xj nð Þ� �þ ε

f xi nð Þð Þ þ ε
xj nð Þ−xi nð Þ� �

if f xi nð Þð Þ > f xj nð Þ� � ; i ¼ 1; 2;…;N ;

j ¼ argmin;k f xk nð Þð Þ ; k∈Ni

ð2Þ

where ε is a small value (in order to make the denominator non-zero). The above

weighted update rules can be justified as follows. Let us suppose that an objective func-

tions is to be minimized. As the best-matching neighbor is found for each agent, it

influences the agent according to its fitness, i.e., its value in the objective function. To

this end, the weight for the update rule of an agent gets as the fitness function at that

agent divided by the fitness value of the best-matching neighbor, often resulting in a

value in the range 0–1 (note that the opinions are updated only when the fitness of

best-matching neighbor is better than that of the agent). It is worth mentioning that in

some cases, the opinions are in multi dimensions, i.e., x is vector, in which the best

matching agent is obtained separately for each dimension.

The method largely depends on the diffusion of good opinions (i.e., those that are

good in terms of the objective function) in the network. Agents with opinion values

close to the optimal objective function disseminate their opinions through communi-

cating with their neighbors, i.e., getting into consensus with them. Indeed, influence of
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opinions is in two folds. Indeed, closer opinions to the optimal value of the objective

function have a better chance to be selected as best-matching neighbors.

The above rule for opinion formation is somehow inspired by communication in hu-

man societies. Our friends influence our behavior in daily life; however, we are usually

affected only when our friends are better than us. Here, similarly, for each agent, first,

the best matching agent is found, and then, its opinion is updated (using equation (2))

if the fitness of the best-matching neighbor is better (i.e., it results in a lower value in

the objective function) than that of the agent.

It is worth mentioning that the consensus (or synchronization) properties of dynamical

networks largely depend on their structure and some topologies are favored for fast consen-

sus (Belykh et al. 2005; Ajdari Rad et al. 2008). Network topology plays also important role

in the evolution of other dynamical phenomena over complex networks, such as evolution

of cooperative behavior among interacting agents (Perc & Szolnoki 2010; Perc 2009).

A pseudo-code of the proposed consensus-based optimization algorithm is illustrated

in section Pseudo-Code as follows.

Pseudo-Code for the proposed consensus-based optimization method

Function CBO

N: number of agents in the population (network size)

M: number of attributes of opinion vector

Boundaries: the range of the opinions

F: desired objective function which is needed to be optimized (minimized in this case)

Begin

– Initialize N * M matrix X by a random normal distribution for the opinion values in

Boundaries;

– net = Create a structured network;

– Repeat

– for each agent i in population do

– for each attribute a do

– neighbors_opinion = mask other attributes of the opinions x in neighbors of agent i

in network net by a dummy value;

– self_opinion = mask other attributes of the opinions x agent i;

– j = find the best agent in neighbors_opinion resulting in the best value for F;

– if neighbor_opinion of agent j optimizes F better than self_opinion then

weight ¼
F neighbors opinionj
� �

þ ε

F self opinionð Þ þ ε
;

x i; a½ � ¼ x i; a½ � þ μ:weight: x j; a½ �−x i; a½ �ð Þ;
x i; a½ � ¼ mod x i; a½ �;Boundariesð Þ;

– end if

– end for

– end for

– Until stopping condition(s) has/have been met

– End
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In the beginning of the process, the agents are initialized by some random

values in a range acceptable by their opinion values. As indicated by Watts and

Dodds (2007) “a minority of individuals who influence an exceptional number of

their peers” (Watts & Dodds 2007), there is often a minority of agents that have

a significant influence on others, which is mainly due to their specific position in

the network The hypothesis of influential agents demonstrated that initiating

influential individuals will be explicitly different from initiating non-influential

ones in the size and likelihood of a cascade (Watts & Dodds 2007). This means

that initial opinions for influential agents probably would bias the result of the

consensus. This phenomenon will not happen in proposed method, since CBO is

not based on the bounded confidence model. Every agent selects his/her best-

matching neighbor regardless of its great social power and degree.
Consensus of opinion values

In this section, we provide a mathematical proof that the update rule expressed in

equation (2) leads the opinions to converge. To this end, let us rewrite it as follows

(Hegselmann & Krause 2002):

x t þ 1ð Þ ¼ A t; x tð Þð Þ:x tð Þ; ð3Þ

where x(t) = [x1(t), x2(t), …, xn(t)] is the opinion vector at time t and A is a time-

dependence state transition matrix that also depends on the opinion vector. We

would like to verify that starting from an initial opinion values x(0), whether or not

all opinions converges to a single value, that is lim t→ ∞xi(t) = x∗ for i = 1, 2, …, N.

Let us define diameter d of the opinions as

d xð Þ ¼ max
1≤i;j≤N

xi−xj
� �

; ð4Þ

Lemma 1 (Krause 2000): Consider a stochastic matrix A (i.e., a nonnegative matrix

with row-sums equal to 1 is defined as a stochastic matrix), then, one has

max
i;j

xi t þ 1ð Þ−xj t þ 1ð Þ�� ��≤d Að Þ: max
i;j

xi tð Þ−xj tð Þ�� ��; ð5Þ

or equivalently,

d x t þ 1ð Þð Þ ¼ d A t; x tð Þð Þ:x tð Þð Þ≤ 1− min
1 ≤i;j≤ N

Xn
k¼1

min aik ; ajk
	 
 !

d x tð Þð Þ; ð6Þ

The above lemma was proved in (Seneta 1981); however, we also give another proof
using a simpler method.
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Proof: Expression (6) can be written as

d Axð Þ ¼ max
1i;j≤N

Aix−Ajx
� � ¼ max

1≤i;j≤N

Xn
k¼1

aikxk−ajkxk
� �

¼ max
1≤i;j≤N

Xn
k¼1

aik−min aik ; ajk
	 
þ min aik ; ajk

	 

−ajk

� �
xk

¼ max
1≤i;j≤N

Xn
k¼1

aik−min aik ; ajk
	 
� �

xk− min
1≤i;j≤n

Xn
k¼1

ajk−min aik ; ajk
	 
� �

xk

≤ 1− min
1≤i;j≤N

Xn
k¼1

min aik ; ajk
	 
 !

max
1≤i≤N

xi− min
1≤j≤n

xj

� �

¼ 1− min
1≤i;j≤N

Xn
k¼1

min aik ; ajk
	 
 !

max
1≤i;j≤N

xi−xj
� �

¼ 1− min
1≤i;j≤N

Xn
k¼1

min aik ; ajk
	 
 !

d xð Þ

Our proposed weighted update rule for opinion formation, as expressed by equation
(2), can be rewritten as

xi t þ 1ð Þ ¼ xi tð Þ þ μwj xj tð Þ−xi tð Þ� � ¼ 1−μwj
� �

xi tð Þ þ μwjxj tð Þ ¼ A :x tð Þ; ð7Þ

It is clear that in the above representation, matrix A is a stochastic matrix.
Theorem 1: The product of two stochastic matrixes is a stochastic matrix.

Proof: Let A and B are two stochastic matrices, and C = A.B is their product. Entries

of C are multiplications of entries of A and B. Since A and B are stochastic, their ele-

ments are non-negative and, thus, the entries of C are also non-negative. The row-sum

of C (Ci for i = 1, 2, …, N) can be obtained as

Ci ¼ ∑
j
Cij ¼

XN
j¼1

XN
k¼1

AikBkj ¼
XN
j¼1

Aik

XN
k¼1

Bkj ¼
XN
j¼1

Aik
�1 ¼ 1; ð8Þ

Therefore, C is a matrix with nonnegative entries and row-sums of equal to 1, and
thus, it is a stochastic matrix.

Let t1 and t2 represent time steps (t1 < t2) and B(t1,t2) = A(t1-1)A(t1-2)A(t1-3)…A(t2),

which models the accumulated weights between time t1 and t2 (Hegselmann & Krause

2002). It can be simply shown that for any r ≥ 0, 1 – r ≤ e–r.

Theorem 2 (Convergence Theorem): Considering opinion update rule (2), suppose

we have a matrix B(t1,t2) = [bij(t1,t2)], which is a stochastic matrix and models accumu-

lated weights where bij is an element of matrix B the sequences 0 = t0 < t1 < t2 < … ≤ T

and δ1, δ2, …, δi, … are such that 0 ≤ δt ≤ 1 and ∑∞
t¼0δt ¼ ∞: . If

∑∞
k¼1min bik tm; tm−1ð Þ; bjk tm; tm−1ð Þ	 


≥δm for all m ≥ 1 and 1 ≤ i, j ≤ N, then for any

initial condition, there exists a consensus, i.e., lim t→∞xi(t) = x* for i = 1, …, N.

Proof: see the Appendix section.

Optimization tasks

We applied our optimization procedure on a number of benchmark problems and

compared its performance with some well-known methods including genetic algorithms

(GA), particle swarm optimization (PSO), differential evolution (DE) and distributed dual
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averaging (DDA) algorithms. GA has been successfully applied to many optimization

problems and was used as a basic paradigm in this work. It starts with a population of

some random solutions – denoted by chromosomes. Therefore, the first step is to encode

the initial solutions from phenotype to genotype. The objective function is then used for

ranking the chromosomes. GA works iteratively and, in each step, uses some operators

such as parent selection, recombination or cross over and mutation (Holland 1975). There

are a number of parameters that should be tuned in order for a GA to work well. These

include crossover probability, mutation probability, population model and parent selec-

tion models. Crossover probability Pc indicates the probability of creating a new chromo-

some from two parents. Mutation probability Pm indicates the portion of the population

that undergoes mutation in each iteration of the algorithm.

DE is one of the best-performing evolutionary algorithms frequently used for

optimization tasks, which often results in the optimal solution in shorter steps as com-

pared to other optimization algorithms. DE uses the difference of a randomly selected

pair of chromosomes – indicating diversity of the population – and adds it to one of

the chromosomes in the population. Then, it uses crossover operators such as binomial

and exponential crossover to combine the chromosomes (Storn & Price 1997). The

parameters of the algorithm are as follows. β is a real value showing the coefficient of

the difference between two selected chromosomes and controls the amplification of

differential variation. Pr indicates the probability of using the mutant (trial) vector. Nv

is an integer number indicating the number of couple chromosomes in calculating the

mutant vector.

We also compared our algorithm with PSO that is a well-known optimization

algorithm based on swarm intelligent (Kennedy & Eberhart 1995). In this algorithm,

there is a population of agents called swarms (or particles) interacting with other agents –

like our algorithm. PSO has two components: cognitive and social components. The

cognitive component is the experience of each particle while the social component is

the experience of the community the agents belong to. PSO has shown high degree of

flexibility and acceptable speed in solving many optimization problems. Here we used

one of the best extensions of PSO that is PSO with Inertia weights (Eberhart & Shi

2000). This feature plays an important role in balancing the powers of exploration and

exploitation and making the algorithm more stable. PSO has a number of control

parameters. Let us denote the parameters controlling the cognitive and social power of

the algorithm as c1 and c2, respectively.

Distributed dual averaging (DDA) algorithm – inspired by Nesterov’s dual averaging

algorithm (Xiao 2010; Nesterov 2009) – has been proposed for optimizing convex

functions (Duchi & Wainwright 2012). Similar to CBO optimization algorithm, DDA is

a network-based optimization method in which each node computes sub-differential of

a local function while receiving information from its neighboring nodes. There is also a

weight matrix to model the weighting process of the method. In any iteration, each

node updates its solution vector by multiplying the stochastic weight matrix by the

summation of its neighbors’ parameters and the sub-gradient of the objective function.

DDA is computationally efficient and the convergence time depends on properties of

the objective function and underlying network topology. Expander graphs have been

proposed as efficient connection topology for DDA optimization algorithm (Duchi &

Wainwright 2012). Alternating direction method of multipliers (ADMM) is another
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optimization method which uses properties of dual decomposition and augmented

Lagrangian methods simultaneously (Boyd & Vandenberghe 2004). The Lagrange dual

function is obtained by convex conjugate definition and the dual problem is solved

using gradient ascent.

Benchmark problems

We evaluated the performance of the proposed optimization strategy on a number of

benchmark problems. As the first problem, we considered the following cost function

F1 xð Þ ¼ −e−2 ln 2ð Þð Þ x−0:1
0:8ð Þ2 : sin6 5πxð Þ; ð9Þ

which is a function with many local optima. The optimal point for which the minimum

1 is achieved for this function is at x* = 0.1.

We used a number of multiple competitive functions which have been introduced as

benchmarks in optimization problems (Tang et al. 2009). The first function of this type

is Shifted Rastrigin’s function that is defined as

F2 xð Þ ¼ Frastrigin xð Þ ¼
XD
i¼1

xi
2−10 cos 2πxið Þ þ 10

� �
; ð10Þ

which is a multimodal, shifted, separable and scalable function. The other function of

this type considered here is Shifted Ackley’s function, which is defined as

F3 xð Þ ¼ Fackley xð Þ

¼ −20 exp −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD
i¼1

x2i

vuut
0
@

1
A− exp

1
D

XD
i¼1

cos 2πxið Þ
 !

þ 20þ e: ð11Þ

We also considered Shifted Schwefel’s function, defined as
F4 xð Þ ¼ Fschwefel xð Þ ¼
Xn
i¼1

ð
Xi
j¼1

xiÞ
2

; ð12Þ

and Shifted Elliptic function, defined as

F5 xð Þ ¼ Felliptic xð Þ ¼
XD
i¼1

106
� � i−1

D−1x2i : ð13Þ

In all above functions except F1, x ∈ [−5, 5]D. Furthermore, the global optimum -
which is F2
* = F3

* = F4
* = F5

* = 0 - is achieved at x* which is a random and different vector

of real numbers in each run.

Network structures

One of the key ingredients of the proposed optimization algorithm is the graph struc-

ture used for connecting the agents, which is kept unchanged during the optimization

process. In other words, the set of neighbours are not changed for the agents. In this

work, we used a number of well-known graph structures including, Erdős-Rényi

random, Watts-Strogatz small-world and Barabasi-Albert scale-free networks.

We used the model introduced by Erdős and Rényi for construction of pure random

networks (Erdős & Rényi 1960). In this model, N nodes are considered and each pair is
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connected with probability P. Research showed that real networks are neither random

nor regular but somewhere in between; they are indeed small-world. In order to

construct small-world networks, we used the original model proposed by Watts and

Strogatz, as follows (Watts & Strogatz 1998). Starting with a regular ring graph in

which each node is connected to its k-nearest neighbours, each edge is rewired with

probability P, provided that self-loops and duplication of edges are prohibited. They

showed that for some intermediate values of the rewiring probability P, we obtain a net-

work with low characteristic path length, comparable to that of random networks, and

high clustering coefficient (i.e., transitivity) that is much higher than corresponding

random networks.

Erdős-Rényi and Watts-Strogatz models result in networks with almost homogeneous

degree distribution. However, it was shown that many real networks have heteroge-

neous degree distribution; there are many low-degree nodes in the network, while a

few nodes are hubs with high degrees (Albert & Barabasi 2002; Barabasi & Albert 1999;

Barabási 2009). Barabasi and Albert proposed a preferential attachment growth model

for constructing such networks, which is used in this work (Barabasi & Albert 1999).

The model starts with a k + 1 all-to-all connected nodes. In each step, a new node with

k links is added to the network. This node tips to the old nodes with probability that is

proportional to their degree, i.e., the higher is the degree of an old node in the network,

the higher the probability of the making connection with the new node. The model

results in scale-free networks whose degree distribution obeys a power-law (Barabasi &

Albert 1999).
Results and discussion
In this section, we report the performance of the proposed Consensus-Based

Optimization (CBO) method as compared to other tools including DE, GA and PSO.

In order to assess the performance of the methods, they were applied to five benchmark

functions as expressed by equations (9)-(13). Function F1 is a simple function consisting

of many local optima and with a minimum of F1(x
*) = −1 at x* = 0.1 (Figure 1a). All classic

optimization tools can solve such a simple task. We investigated whether or not the

proposed CBO algorithm could find the optimum for this function. Figure 1b shows

the performance of CBO when Barabasi-Albert (BA), Watts-Strogatz (WS) and Erdős-

Rényi (ER) networks were used as interaction topology. We set the network parame-

ters as N = 1000 and k = 4 for BA model; N = 1000, k = 4, and P = 0.1 for WS model;

N = 1000 and P = 0.1 for ER model. As it is seen, the optimization strategy of CBO is

efficient and could find the optimum value in all topologies. For this simple problem,

GA resulted in the best performance followed by CBO method. However, in order to

better compare the performance of the methods, we applied them on more difficult

objective functions.

In order to assess the ability of CBO on solving more complex optimization tasks, we

considered the connection graphs with structural properties as above. Figures 2 and 3

show the influence of parameters on the performance of CBO algorithm in optimizing

the objective function F2. μ controls the speed of convergence; we obtained the value of

μ = 0.6 as optimal for the optimization task (Figure 2). Large values for μ result in

zigzag convergence which is clearly indicated in large variance for such cases. Like



Figure 1 a) Function F1, b) The optimum value as a function of iteration steps using CBO based on
Barabasi-Albert (BA), Watts-Strogatz (WS) and Erdős-Rényi (ER) models, DDA based on Cycle (C) and
Expander (E) network model, GA, DE and PSO algorithms. The networks are with N = 1000 and the
results show averages over 50 runs.
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other optimization algorithms, CBO is sensitive to the number of agents (i.e., network

size N), in which as the number of agents increases, the performance gets better (Figure 3).

However, increasing the size of the network means increase in the computational com-

plexity of the algorithm. For our simulations, we fixed the network size as N = 1000,

since for larger networks than this size, the improvement is not significant. We also

set the number of agents in other optimization algorithms at N = 1000; which makes

their results comparable. For the parameters of GA, we set Pc = 0.85 and Pm = 0.05.

Furthermore, we set steady-state form for population model and fitness proportionate
Figure 2 Effect of μ in the performance of CBO; the plot shows the mean and standard error of the
objective function F2 at the end of the convergence (i.e., the last iteration) as a function of μ. The
connection graph is Barabasi-Albert (BA) with N = 1000 and data show averages over 50 runs.



Figure 3 Effect of network size in the performance of CBO; the plot shows the mean and standard
error of the objective function F2 at the end of the convergence (i.e., the last iteration) as a
function of the size of Barabasi-Albert (BA) network. Data show averages over 50 runs.
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selection policy for parent selection model. The parameters of DE algorithm was set as

β = 0.9, Pr = 0.9 and Nv = 1 with binomial crossover and random parent selection

policy. We set c1 = 0.1 and c2 = 0.9 for PSO resulting in balanced framework for both

exploration and exploitation power.

Figures 4,5,6 and 7 show the performance of CBO algorithm using various graph

topologies as compared to DE, GA, PSO and DDA methods for optimizing F2-F5,
Figure 4 The objective function F2 as a function of iterations in different optimization algorithms.
The optimization methods are distributed dual averaging (DDA) with two network models Cycle (C) and
Expander (E), genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO) and the
proposed consensus-based optimization (CBO) with three schemes for the connection topology between
the agents: Barabasi-Albert (BA), Watts-Strogatz (WS), and Erdős-Rényi (ER). All methods have a population
of 1000 nodes, the desired function has 5 dimensions and the optimum output is 0. Data show averages
over 50 runs.



Figure 5 Objective function F3 as a function of iterations steps averaged over 50 runs. Other
designations are as Figure 4.
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respectively. The results were averaged over 50 runs. Note that some algorithms could

not find the optimum solution in the considered number of iterations in some runs,

resulting in a drift from the optimum value in their reported profile (which shows

average over 50 runs). Majority of the algorithms could find the optimum; however,

they showed significantly different performance. CBO with BA and ER as connection

structure among the agents, showed the best performance (i.e., finding the optimum in

the least iteration steps) as compared to other algorithms for F2 (Figure 4). They could

find the optimum solution in about 16 steps, which is much less than the steps of GA
Figure 6 Objective function F4 as a function of iterations steps averaged over 50 runs. Other
designations are as Figure 4.



Figure 7 Objective function F5 as a function of iterations steps averaged over 50 runs. Other
designations are as Figure 4.
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and DE needed to converge. PSO and CBO with WS topology could not find the

solution in some runs resulting in a drift in their performance. Except for F2, DDA

based on Expander network worked better than or equals the one based on Cyclic one.

Although DDA has been shown to be well-performing optimizer for convex functions,

it did not result in good performance for the objective functions considered in this

work. This is due to the fact that these functions are widely non-convex and a method

specially designed for convex functions might not properly work on them.

All algorithms could find the optimum solution for objective function F3 as expressed

by equation (11) with the results shown in Figure 5. However, CBO algorithms showed

much faster convergence than others. In terms of network topology in CBO, BA and

ER topologies worked better than the case when WS model used for constructing inter-

action topology. CBO was also better than GA, DE, PSO and DDA in optimizing the

objective functions F4 as expressed by equation (12) and F5 as expressed by equation

(13) and the results are shown in Figure 6 and 7, respectively. While, ER topology

resulted in a bit faster convergence than BA and WS for F4, their performance was

almost the same for F5. It is expected that consensus on random networks should be

the fastest as compared to the one in BA and WS networks. This is mainly due to

the fact that random networks often have shorter average path length compared to

other models.

We also compared the computational complexity of these methods by calculating

their convergence times for the considered objective functions (Table 1). CBO showed

the best performance (i.e., the least number of iterations until convergence) followed by

PSO and GA. DE and DDA were the slowest methods among these optimization

algorithms.

In sum, our experiments showed that performing an optimization task with a simple

consensus network provides the solution with a better performance than a number of



Table 1 Iteration count averaged over 50 runs till convergence happened in
optimization methods include distributed dual averaging (DDA), genetic algorithm (GA),
differential evolution (DE), particle swarm optimization (PSO) and the proposed
consensus-based optimization (CBO)

DDA GA DE PSO CBO

F1 6 6 26 9 3

F2 63 44 535 26 12

F3 13 18 87 13 9

F4 134 49 365 21 13

F5 123 55 121 24 31
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classic optimization tools including GA, DE, PSO and DDA. Furthermore, we found

pure random topologies constructed by Erdős-Rényi model more effective than small-

world topologies constructed by Watts-Strogatz model and scale-free topologies

obtained through Barabasi-Albert preferential attachment model.

Conclusion
In this paper we introduced a novel application for consensus phenomenon in complex

networks. Consensus in networked structures has many applications ranging from

engineering (e.g., sensor networks) to sociology (e.g., opinion formation in social net-

works). In this manuscript, we used network consensus to solve optimization tasks. We

considered a number of agents interacting over a networked structure with topology as

random, small-world or scale-free. Furthermore, each agent was associated with an

opinion value which could change in collaboration with neighboring agents. The agents

worked collectively with their friends (which was defined based on the considered net-

work topology and was kept unchanged during the optimization process) to solve an

optimization task. To this end, each agent adapted its opinion value based on the best-

matching neighbor, i.e., the neighbor with the best value in the objective function. The

proposed consensus-based optimization (CBO) method was applied on a number of

benchmark problems and its performance was compared with that of a number of clas-

sic optimization tools such as genetic algorithms, differential evolution and particle

swarm optimization. Our experiments showed that CBO could always find the optimal

solution faster and more reliable. We also found Erdős-Rényi random topology better

than Watts-Strogatz small-world and Barabasi-Albert scale-free topologies for which it

could solve the optimization task faster when used in CBO as connection graph.

Appendix
Proof of the Convergence Theorem: Based on the assumption made in the theorem

XN
k¼1

min
1≤i;j≤N ;m≥1

bik tm; tm−1ð Þ; bjk tm; tm−1ð Þ	 

≥δm; ð14Þ

We have
1−
XN
k¼1

min
1≤i;j≤N ;m≥1

bik tm; tm−1ð Þ; bjk tm; tm−1ð Þ	 
 !
: d x mð Þð Þ≤ 1−δmð Þ d x mð Þð Þ: ð15Þ
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Having (15) and the results of Lemma 1, one concludes that

d x mþ 1ð Þð Þ ¼ d B: x mð Þð Þ
≤ 1−

XN
k¼1

min
1≤i;j≤n;m≥1

bik tm; tm−1ð Þ; bjk tm; tm−1ð Þ	 
 !
: d x mð Þð Þ;

≤ 1−δmð Þ: d x mð Þð Þ
ð16Þ

That is
d B: x mð Þð Þ≤ 1−δmð Þ: d x mð Þð Þ: ð17Þ

Having (17) and using the results of Theorem 1, one concludes

1−δmð Þ: d x mð Þð Þ≤e−δmd x mð Þð Þ: ð18Þ

We have

e−δmd x mð Þð Þ≤e−δme−δm−1d x mð Þð Þd x m−1ð Þð Þ≤

L≤e−δme−δm−1Le−δ0d x 0ð Þð Þ ¼ e
−
X∞
i¼0

δi
d x 0ð Þð Þ:

ð19Þ

Using (17)-(19) and the fact that ∑∞
t¼0δt ¼ ∞; we conclude that

d x mþ 1ð Þð Þ ¼ d B: x mð Þð Þ≤e
−
X∞
i¼0

δi
d x 0ð Þð Þ ¼ 0: ð20Þ

Or, in other words

lim
t→∞

d x tð Þð Þ ¼ 0: ð21Þ

Since B is a stochastic matrix and x(t + 1) = B(x(t),t).x(t), we have

min
j

xj tð Þ≤ xi t þ 1ð Þ≤ max
j

xj tð Þ ; i ¼ 1;…;N ; ð22Þ

Which becomes the following when time approaches to infinity
lim
t→∞

min
j

xj tð Þ≤ lim
t→∞

xi t þ 1ð Þ≤ lim
t→∞

max
j

xj tð Þ:

ð23Þ

Let us denote the lower bound of the opinions by p and their upper bound by q.
Then, the above expression becomes

p≤ lim
t→∞

xi t þ 1ð Þ≤q: ð24Þ

Now, using equations (21) and (4) we have

lim
t→∞

max
i

xi tð Þ− lim
t→∞

min
i

xi tð Þ ¼ p−q ¼ 0→p ¼ q: ð25Þ

Applying Squeeze Theorem (Steinhaus 1938), we have

lim
t→∞

xi t þ 1ð Þ ¼ lim
t→∞

B x tð Þ; tð Þ:xi tð Þ ¼ x� ; i ¼ 1;…;N : ð26Þ

And this completes the proof.
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