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Abstract

Purpose: Complex networks seem to be ubiquitous objects in contemporary
research, both in the natural and social sciences. An important area of research
regarding the applicability and modeling of graph- theoretical-oriented approaches to
complex systems, is the probabilistic inference of such networks. There exist different
methods and algorithms designed for this purpose, most of them are inspired in
statistical mechanics and rely on information theoretical grounds. An important
shortcoming for most of these methods, when it comes to disentangle the actual
structure of complex networks, is that they fail to distinguish between direct and
indirect interactions. Here, we suggest a method to discover and assess for such
indirect interactions within the framework of information theory.

Methods: Information-theoretical measures (in particular, Mutual Information) are
applied for the probabilistic inference of complex networks. Data Processing Inequality
is used to find and assess for direct and indirect interactions impact in complex
networks.

Results: We outline the mathematical basis of information-theoretical assessment of
complex network structure and discuss some examples of application in the fields of
biological systems and social networks.

Conclusions: Information theory provides to the field of complex networks analysis
with effective means for structural assessment with a computational burden low
enough to be useful in both, Biological and Social network analysis.

Keywords: Complex networks structure, Probabilistic network inference, Feature
selection, Information theory

MSC: 94A15,62B10,91D30, 05C82

Background
Complex networks, no doubt constitute one of the cornerstones of contemporary
research in many branches of science (Barabasi 2012; Newman 2003). From systems biol-
ogy to the study of the role of friendship in the spread of diseases, connections between
individuals at different organizational levels are outlined using complex graphs.
Alongside with the statistical analysis of large complex networks, the need for robust
methodologies to infer such networks from empirical data has risen. Most of these meth-
ods rest on the domain of probabilistic inference and computational learning (Bickel and
Doksum 2007; Herndndez-Lemus and Rangel-Escarefio 2011) and as such, they are sub-
ject to expectation errors and asymptotic constraints. Apart from the problem of inferring
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large networks from noisy data sources (Bansal et al. 2007; de Jong 2002; Hernandez-
Lemus et al. 2009), complex network researchers in general, are confronted with some
subtler structural challenges in network reconstruction. One of such challenges lies in the
capacity to assess direct from indirect interactions (Chua et al. 2008; Tresch et al. 2007).

The assessment of direct and indirect interactions may play an important role in under-
standing network navigability, community structure and information flow, specially when
considering the range of influence of given nodes within a network, the strength of the
interactions and how these interactions shape the whole correlation structure, as well as
the topology and dynamics of the system. For instance, in gene regulatory networks, when
it comes to the functional role of subnetworks forming either motifs or pathways, there
is an important distinction between genes locally involved in the regulation of a small set
of highly specific targets and some other genes that are involved in the transcriptional
control of a large number of targets, often by means of a chain of indirect interactions.
The first set of genes is responsible for the fine tuning processes involved in environment-
specific genomic control, while the second set (known as master regulators) is related
with long range, large scale control of genome expression used by the cell mechanisms of
growth and proliferation (Baca-Lopez et al. 2012).

In the case of social networks, there is also a growing interest in the role that indi-
rect interactions may play in information and influence flow among nodes (Fowler and
Christakis 2007, 2010). In some instances (such as the social epidemiology of obesity)
(Fowler and Christakis 2007) it has been shown that indirect connections (i.e. second
degree links) within a social network may, under some conditions, exert a greater influ-
ence than direct interactions that however shape the global structure of the network. Such
structural determination may be one of the keystones to discern between diverse fea-
tures of influence in social networks such as homophily, social contagion and covariation
(Shalizi and Thomas 2011). We may envisage other instances in the realm of complex net-
works where the distinction between direct and indirect links may be of some relevance,
such as ecological or economic-financial networks, etc (Beltran et al. 2012; Callaway and
Howard 2007; Tsatskis 2012).

Methods for direct and indirect interactions assessment found in the reviewed liter-
ature were designed ad hoc for too dense or too small networks (Nawrath et al. 2010;
Yan et al. 2007), and most of them require additional information in order to estimate or
tune parameters to differentiate the two kinds of interactions (Chua et al. 2008; Yan et al.
2007). Noteworthy is to say, a great deal of importance was expressed in direct and indi-
rect interactions assessment, regardless the particular field of research (Systems Biology,
Economics or Ecology). Most efforts invested in distinguishing between these two kinds
of interactions among nodes were either done manually (for instance, see (Beltran et al.
2012; Callaway and Howard 2007)) or rely on extremely specific issues of the underlying
networks (Baldazzi et al. 2010; Nawrath et al. 2010), hence the relevance of the method
we introduce in this paper.

We suggest a general method to discover and assess for direct and indirect interactions
within the framework of information theory. The method we submit in this paper allows
to reconstruct the basic structure of complex networks. Since our method rests on the
comparison of Mutual Information (MI) among nodes in a triangle, it is not affected by
directionality between links, directionality is detected instead, once the basic structure
of the network is already in place. In what follows we will discuss some methods based
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in probabilistic inference and information theory by means of which researchers may be
able to infer and assess complex network structure from the probability distributions of
some empirical quantitative features.

Methods

Information theoretical approaches in network inference

Information theory (IT) offers a powerful theoretical foundation that is well-fit to
contribute to the development of computational methodologies intended to deal with
network inference problems as applied to real data in several branches of complex sys-
tems theory (Herndndez-Lemus and Rangel-Escarefio 2011). IT also provides an analogy
with statistical mechanics (SM), that can be useful for inferring network interactions
(links) from between-node correlation measures, thus enabling to use (although in a
quite non-trivial manner) the huge arsenal of tools of this science. There are, however
a number of open questions in the application of IT to the probabilistic complex net-
work inference. The applied algorithms may be able to return intelligible models relying
on scarce a priori information while dealing with a potentially large number of variables.
IT methods may also detect non-linear dependencies in highly noisy non-independent
probability distributions. The best benchmarking options for such kind of complex net-
work inference, for us, seems to be the use of sequential search algorithms (instead of
stochastic search, typically involving the assignment of structures for large constrained
datasets, since these procedures have a high computational complexity, even NP-hard"
-exponentially large search-space-) and performance measures based on IT, since this
makes feature selection fast end efficient, and it also provides an easy way to
communicate results.

Information theoretical measures have been applied intensively to infer interactions
in complex networks, in particular in the field of computational biology (Bansal et al.
2007; de Jong 2002; Fleuret 2004; Herndndez-Lemus et al. 2009; Margolin et al. 2006;
Peng et al. 2005; van Someren et al. 2002) but also in social network studies (Crowley-
Riddey 2009; Dong 2011; Mislove 2009; Mislove et al. 2010; Zhao et al. 2011). A group of
correlation measures including mutual information, Markov random fields and Kullback-
Liebler divergences, amongst others are considered appropriate to perform probabilistic
network inference (Herndndez-Lemus and Rangel-Escarefio 2011). However, since condi-
tional probabilities obey the so-called tower property, a number of false positives links may
appear as a consequence of indirect correlations (Herndndez-Lemus and Rangel-Escarefio
2011).

For instance, if node (or agent) A has a high value of conditional correlation (say,
mutual information) with node B, and B is also highly correlated with node C, most
common algorithms would predict (with a marginal probability p™) the presence of
a (possibly non-existent) link between processes A and C. In order to correct for the
presence of indirect links we may implement some methods from IT, such as bounds
in the information-theoretical probability measures and the use of the Data Processing
Inequality (DPI) (Sehgal et al. 2007). DPI can provide a bound to the extent on which
signal processing may optimize probabilistic inference. We will discuss these and other
ideas in the framework of network inference and structure assessment. We will also dis-
cuss some of their implications, and potential applications in the contemporary complex
systems scenario.
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Some of the essential notions of IT that will be used in this work are: (information-
theoretical) entropy, mutual information and other related measures. To do so, let X and
Y denote two discrete random variables having the following features:

Finite alphabet X’ and ) respectively

Joint probability mass distribution p(X, Y)

Marginal probability mass distributions p(X) and p(Y)
Conditional probability mass distributions p(X|Y) and p(Y|X)

Following Shannon (1949), it is possible to define the information theoretical entropy H
of such distribution as follows

H=—KY_ py(X)logp,(X) 1)

here H is called Shannon-Weaver’s entropy, K; is a constant, useful the determine the
units in which entropy is measured (bits, nats, and so on, depending on the base of the log
used) and p,, (X) is the mass probability density for state v of the random variable given by
X = x. IT entropy is a measure of the amount of uncertainty associated to the value of X,
hence relating the predictability of an outcome to the probability distribution. Let us now
consider two discrete random variables (Y, X) with a Joint Probability Distribution (JPD)
p(Y, X). For these random variables the joint entropy H(Y, X) is:
HY,X) = =Y > p(y,%) logp(y,x) )
yeYxeX
The maximal joint entropy corresponds to independence conditions of the random
variables Y and X i.e. when the JPD is factorized p(Y,X) = p(Y)p(X). The entropy of
the JPD is then just the sum of their respective entropies. An inequality theorem could be
stated as an upper bound for the joint entropy:

HY,X) < HY) + HX) 3)

Equality holds i ££ X and Y are statistically independent.
Also, given a Conditional Probability Distribution (CPD), the corresponding condi-
tional entropy of Y given X is given by:
HYX) = =) > p(,%) logp(ylx) (4)
yeYxeX
Conditional entropies measure the uncertainty of a random variable once another one
(the conditioner) is known. It can be proved (Cover and Thomas 1991) that:

HY,X) = HX) + HY|X) < H(Y) + H(X) (5)

HY1X) = H(Y) (6)

Again, equality holds 1 ££ X and Y are statistically independent. Equation 6 is useful in
the inference/prediction scenario as follows: if Y is a target variable and X is a predictor,
adding variables can only decrease the uncertainty on target Y. As it will be shown later,
this is essential for network inference when applying IT methods. Entropy reduction by
conditioning can be accounted if we consider a measure called the mutual information,
I(Y, X) which is a symmetrical measure (i.e. I(Y, X) = I(X, Y)) that is written as:

I(Y,X) = HY) —H(Y|X) or I(X,Y) =HX) — HX|Y) )
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If we resort to Shannon’s definition of entropy (equation 1) (Shannon and Weaver 1949)
and substitute it into equation 7 we get:

px,y)

p@)p©») ®)

HY,X) = =) Y p(xy)log

yeYxeX

A comprehensive catalogue of algorithms to calculate diverse information theoretical
measures (including mutual information) has been developed for [R], the statistical scien-
tific computing environment (INFOTHEO ). We will analyze the special role that MI has
in the field of complex networks inference from quantitative feature data. MI has been
applied successfully as a measure to infer 2-way interactions in complex networks (quite
specially in the field of Gene Regulatory Networks or GRNs) (Andrecut and Kauffman
2006a; Andrecut and Kauffman 2006b; Madni and Andrecut 2007; Margolin et al. 2006).
As we have seen, MI quantifies the degree of statistical dependency between two ran-
dom variables (say « and ). One can see that MI(«, 8) = 0 iff o and B are statistically
independent.

Hence, if we measure some quantitative-feature of interest ¢ (say expression level of
genes in GRNs), by studying its profile (and more specifically the mutual correlation pro-
file for a set of nodes) we may find interactions conforming a network. A pair of agents
characterized by feature distributions #; and ¥; for which MI(9;, ;) # 0 are said to inter-
act with each other. Since MI is reparametrization invariant, one usually calculates the
normalized mutual information. In this case MI(;, ¥;) €[ 0, 1], Vi, .

Distinguishing between direct and indirect interactions

With these definitions in mind, let us consider two random variables, X and Y, whose
mutual information is MI(X, Y). Now consider a third random variable, Z, that is a (prob-
abilistic) function of Y only. It can be shown that Pz xy = Pzy, which in turn implies
that Px|yz = Px|y, as follows from Bayes’ theorem.

An information-theoretical theorem called the Data Processing Inequality (DPI) states
that Z cannot have more information about X than Y has about X; that is MI(X;Z) <
MI(X;Y). We can see that MI(X; Z) = H(X) — H(X|Z) < H(X) — H(X|Y,Z) = H(X) —
HX|Y) = MI(X;Y). Inequality follows because conditioning on an extra variable (in
this case Y as well as Z) can only decrease entropy (in a similar way to what occurs in
statistical physics when adding constraints to a thermal system), A formal definition of
such a theorem would be:

Definition 1. Three random variables X, Y and Z are said to form a Markov chain (in
that order) denoted X — Y — Z, if the conditional distribution of Z depends only on Y
and is independent of X. i.e. if we know Y, knowing X doesn’t add anything new to what we
already know about Z than if we know only Y.

If X, Yand Z form a Markov chain, then the Joint Probability Distribution can be written
as follows:

P(X,Y,Z) = PX)P(Y|X)P(Z|Y) )
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Theorem 1. Data Processing Inequality: If X, Y and Z form a Markov chain, then

MI(X;Z) < MI(X;Y) (10)

Proof. By the chain rule for mutual information we can state that:

MI(X;Y,Z) = MI(X;Z) + MI(X; Y|Z)
MIX;Y) + MI(X; Z|Y)

By the Markov property, since X and Z are independent, given Y, MI(X; Z|Y) = 0, then,
since MI(X; Y,Z) > 0 we have: MI(X; Z) < MI(X;Y) c.q.d. [

In reference (Margolin et al. 2006), the application of DPI has shown that if nodes 9
and 93 interact only through a third node, ¥, within a given network, MI(¢;,¥3) <
min[ MI(91, ¥2); MI(99,93)]. Hence, the least of the three Mls values may come from
indirect interactions. The proposed algorithm examines each triplet vertex for which all
three MlIs are measured and compared to some threshold value MIy. If there is an edge
with an MI value below the threshold, then it is removed (see Figure 1). DPI is thus useful
to quantify efficiently the dependencies among a large number of nodes. The DPI algo-
rithm is useful in the problem of complex network structure assessment as well, since it
eliminates those statistical dependencies that might be of an indirect nature.

In some cases, however, it may happen that the Markov chain structure is not abso-
lutely fulfilled. Say when nodes ©#; and ¢3 interact not only through a third node, 9, but
also by means of a direct interaction. Hence ¢ and 3 may be two-fold connected, in this
case pruning-out one of the links may render an inaccurate version of the actual inter-
action pattern. This scenario can be accounted for by means of establishing a threshold
for removing a link, i.e. the link with the lesser MI measure would be removed only if its

A i

@) MMy, My, M
=

M IM"- " M IIH
MIu‘y@MIBV MI“Y@ & MIB‘/
B C D

Figure 1 Absolute application of the DPl inequality to assess the direct interaction structure of a three
node sub-network. Panel A depicts a three node subnetwork composed by nodes «, 8 and y. Interactions
were inferred by means of mutual information calculations for a selected quantitative feature. The interaction
strength between the nodes i,/ is given by the respective Ml; (i,j = a, B, ) values. Panels B, C, and D result
from pruning the subnetwork from the link with the lowest Ml Ml p (B), Mlg,,, (C), and Mlg,, (D).
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value is below a certain threshold (that we hereon call DPI,,;) -to be determined in a case-
by-case basis by close examination of the network and also by considering its intended
applications- and it stays in the network otherwise (Figure 2).

There are similar approaches to the one just presented, for instance the ones in refer-
ence (Liang and Wang 2008) and in reference (Zhang et al. 2012). Both approaches are
based in conditional mutual information (i.e. the degree of information a variable X and
a variables Y share, given a third variable (or group of variables) Z). These algorithms try
to account for indirect links by means of conditioning the associated mutual information
distributions. In reference (Zhang et al. 2012), the authors further improve the perfor-
mance of the algorithm by using an adaptive computation framework. In addition to these
good performance general methods (references (Liang and Wang 2008; Zhang et al. 2012)
were developed for gene regulatory networks although with minimal adjustments can
ba applied to any other probabilistically inferred networks), there are also more specific
approaches based on somehow Ad Hoc considerations. We can mention, for instance the
MARINa algorithm (Lefebvre et al. 2010; Lefebvre et al. 2007; Mani et al. 2008) developed
specifically for the assessment and reconstruction of gene regulatory networks based on
statistical enrichment of certain signatures (Subramanian et al. 1554), an approach close
in philosophy of that of conditioning variables that, however requires for additional infor-
mation (i.e. the signatures themselves) to be useful, hence is more restricted to its scope
and applications as are approaches relying on additional phenotypic information (Wu et
al. 2009; Yu et al. 2006).

Data and algorithms

In order to introduce the importance of telling direct network interactions from indi-
rect ones, we performed a topological analysis on the Gene Network of the fruit fly,
Drosophila melanogaster (D.m.). The fruit fly Gene Network is a paradigmatic system for
genetic studies and one of the best annotated organisms in genomics databases. It also
presents a high genomic similarity to that of mammals -humans included- (about 61% of
disease-associated genes in humans have a D.m. counterpart) and there is open access
to its high-throughput inferred biological network (Costello et al. 2009). By discussing

A M1,
@,’ Min{l\/”uﬁ, MlBy! MIG‘/} =M

p
MCMIBI \
; <DPI tol / A M1, > DPI_tol

@..‘..:
uy®MlM M1, @MIM
B C

Figure 2 Relative application of the DPl inequality to assess the direct interaction structure of a three
node sub-network. Panel A depicts a three node subnetwork composed by nodes «, B and y. Panels B, and
C result from pruning (or not) the subnetwork from the link with the lowest Mij, in this case Mly, g. The a-
link is removed only when its respective Ml-value is lower than a predetermlned threshold DPI_tol and left in
the network otherwise.

MI
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some features of the network structure of this highly studied species we introduce the
problem of finding direct and indirect interactions in complex networks inferred from
experimental data. Once this problem has been outlined, we proceed to illustrate how
the methods of information theory may be appropriate to distinguish between direct
and indirect interactions in order to sketch (at least partially), the network structure on
a gene regulatory network inferred from experimental data obtained from 1191 whole
genome gene expression experiments in breast tissue from breast cancer patients/controls
and on a social network inferred from researchers at Mexico’s National Institute
of Genomic Medicine coauthorship collaborations data, retrieved from the PubMed
database.

As explained before, the methods of information theory used here correspond to the
implementation of MI calculations and DPI to infer and prune respectively such net-
works. There is a number of different methods for computing this quantities in the
literature (Herndndez-Lemus and Rangel-Escarefio 2011) and most of them are quite
functional and almost equivalent in performance. Here we used the C++ implementation
of the aracne algorithm (in particular we resort to aracne 1.0 even if there is a new
version 2 . 0 with an improved algorithmic complexity performance, because version 2. 0
uses a bootstrapping method that we have found to be still a little bit unstable) (Margolin
et al. 2006) for Biological Networks and Python scripts (some customized and others
from the NetworkX library) for the Social Networks. The aracne 1.0 algorithm is use-
ful for our purposes since it is based on crystal clear MI calculations (Hernindez-Lemus
and Rangel-Escarefio 2011), it is possible to implement DPI thresholds and its algorithmic
complexity and performance are quite good (we have benchmarked aracne 1.0 against
other information-theoretical methodologies such as Information Based-Similarity (ibs)
and linear correlation predictors in the past (Herndndez-Lemus et al. 2009) with very
acceptable results). Cytoscape and Python’s library NetworkX were used to depict and
analyze the networks (Assenov et al. 2008).

Microarray pre-processing of the data was performed by using the affy library in
BioConductor running under [R] on a 128 Gb RAM 8-Power5+ dual core-processor,
symmetric multiprocessing (SMP) unit by IBM. All statistical tests were performed on
a Dell Precision Series 16 Gb RAM QuadCore Workstation by using 1imma package in
[R]/BioConductor. Information theoretical measure calculations for biological systems
were performed by the aracne v 1.0 program in the IBM SMP machine. Python scripts
were used instead for Social network calculations. Graphical depiction and network
analyses were performed on a MacBook Pro 8 Gb i7.

The Drosophila melanogaster GRN used to highlight the presence of hierarchical struc-
ture was not further used here to demonstrate IT methods of network assessment. The
reason for this is that it was inferred (Costello et al. 2009) by using Pearson correlation
metric, which is a linear measure, thus unable to capture the whole statistical dependency
spectrum. Let us recall that for two statistically independent random variables Pearson
correlation coefficient is 0. However, the converse is not always true, because Pearson
correlation coefficient detects only linear dependencies between two variables. Null Pear-
son correlation coefficients only implies statistical independence for the special case of
jointly normal distributions. Since this is not the general case in gene expression distri-
butions, values of linear correlations are not enough to determine statistical dependency
(Herndndez-Lemus et al. 2009).
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Results and discussion

Network assessment in biological networks

In order to introduce the need for complex network assessment of indirect interac-
tions, let us consider the case of the gene regulatory network of the fruit fly (Drosophila
melanogaster, D.m.), which is one of the best curated biological networks that has been
constructed ever. By means of computational integration in a probabilistic model of high
throughput data sets from DNA, RNA and protein assays, combined with data mining
for individual genes to phenotypes treats, such network has been assembled with the
goal of providing a ...meaningful, functional gene network and to draw new and unfore-
seen connections...(Costello et al. 2009). D.m. is of course a model organism for too many
instances in genetics and genomics. One particular feature that is long known for the
genetic structure of D.m., is the fact that gene regulation is largely determined by the
action of a relatively small set of molecules that are able to exert transcriptional control
in the highly active stages of development and proliferation (Baker 2001; Brennecke et al.
2007; Harrison et al. 2011; Wells 2009). For instance, aspects of regeneration are often
regulated by complex mechanisms of activation for several growth regulatory pathways in
damaged tissue. It has been proved that every pathway involved is being regulated by the
p53 molecule in D.m., (dP53). dP53 is thus a critical master regulator in the GRN of D.m.,
in particular with regards to cell growth, proliferation and differentiation. Interestingly
enough, the human homolog of this very molecule is known to play a quite important role
in most human cancers. dP53 is by no means the only master regulator in drosophila; an
extremely important gene that acts as a universal master regulator in D.m. is the molecule
called eyeless (ey). This gene was first study in relation to eye development (hence the
name, larvae with knocked-up eye does not develop eyes). However, the role of ey is not
restricted to eye development. Abnormal expression of the gene is able to convert other
tissues into eye-cells, including legs, wings and antennae. ey is also involved in control-
ling the processes that coordinate differentiation of several cell types in a very precise way
in order to develop the fly eye. The ey-homolog Pax6 and homologs of other eye deter-
mination genes from D.m., are also required for tissue development in vertebrates. It has
been shown that ey becomes a master regulator of development deep until later stages by
means of regulation by signaling through the Notch and EGFR signaling pathways (two
outstanding important generalistic signaling pathways) (Baker 2001).

Other master regulator genes are known to play special roles in D.m. Such is the case
of the zinc-finger protein Zelda (ZLD) that plays a key role in transcriptional activation
and as a master regulator of genome activation in the earliest stages of D.m. develop-
ment (Harrison et al. 2011). The ZLD transcription factor bounds to thousands of sites
across the genome at all developmental stages of D.m., with relatively small changes in
binding between stages. The number and range of ZLD targets - around 2,000 genes have
ZLD bound to their promoters and/or enhancers - demonstrate that it plays a major role
in maternal-to-zygotic transition activation. Hence Zelda should be an important hub in
the transcriptional regulation network for D.m. However, probably the most important
group of master regulators in the fruit fly GRN is formed by the so-called piwi family of
transcription factors. The piwi class of genes was identified long ago as encoding regu-
latory proteins that are responsible for the maintenance of incomplete differentiation in
stem cells and also in preserving the stability of cell division rates in germ line cells, a
quite important set of processes related again to all stages of development, growth and
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differentiation (Brennecke et al. 2007). There are plenty of other examples (Drosophila
melanogaster is known to have some 50 or more master regulators in its GRN (Costello
et al. 2009) but we think that these may be sufficient to establish the point that within the
GRN for D.m. the presence of such highly connected nodes (hubs) should be evident.

If we refer to Figure 3, in panel A we can see a rendering of the whole D.m., genome
GRN (Costello et al. 2009). A clustering algorithm (Bader and Hogue 2003 was used to
color-code genes (white-to-red) according to their degree of clustering (red genes are
strongly clustered whereas white ones are largely isolated). The relative importance of
master regulator genes -that may be measured, for instance through their associated cen-
trality degree- is not evident from the network structure. These genes are also important
for biological reasons, since they determine to a large extent the regulation patterns of
the entire network. In panel B we present the same network but we color-coded individ-
ual nodes according to their degree distribution. Some important clusters seem to appear,

Figure 3 Largest island in the gene regulatory network of drosophila melanogaster. Gene Network
constructed from top 200,000 gene pairs (Costello et al. 2009). Panel A: Nodes are color coded (white-to-red)
according with their MCode scores (Bader and Hogue 2003) for clustering. Red nodes are genes tightly
clustered. It can be seen that there is strong clustering between nearly all genes. However, no definite
structural features are evident. Panel B: Same gene network as in panel A but with node-coloring and sizing
determined dy connectivity degree: Big red nodes are highly connected genes whereas small green ones are
lowly connected genes. Panels € and D present zoomed-in renderings of the boxes in panels A and B
respectively. As in panel A, panel C does not permit to observe network structure. Panel D, in the other hand,
shows the presence of some hyper-connected genes (or hubs, here in red) that are densely linked to highly
connected nodes (dark orange) passing through less connected ones (light orange) until reaching barely
connected genes (yellow and finally green) suggesting some kind of hierarchical structure in the network
wiring.
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however it is difficult to asses the relevance of individual nodes. In panels C and D we can
see zoomed-in renderings of the rectangular regions in panels A and B respectively. As in
panel A, panel C is inadequate to highlight the relative importance in the very same aspect
as in panel A of individual nodes. In panel D, highly connected genes are highlighted (big
red nodes), however the complex entanglement of direct and indirect interactions makes
impossible to detect the actual relative importance of these, since they are surrounded
by many medium to medium-high connected nodes. This situation is precisely the one
calling for a method to assess for direct and indirect interactions. In what follows we will
show a proposal for such method, based in the tenets of information theory as applied to
both a biological network (a GRN for primary breast cancer) and (in the next subsection)
a social network (a scientific collaboration network based in co-authorship probabilities).

Gene regulatory network for primary breast cancer

To show the application of IT methods to infer and assess complex biological networks,
let us consider the GRN for primary breast cancer as inferred by means of MI-calculations
(Margolin et al. 2006) (see Methods) in the whole genome gene expression levels (for dif-
ferentially expressed genes between biopsy-captured primary breast cancer and healthy
breast tissues as controls) (Baca-Ldpez et al. 2012). In Figure 4 we present the aforemen-
tioned network, where a complex entangled structure reflecting the intricate regulatory
relationships driving the cancer phenotype is displayed. As in the D.m. case, in panel B we
show a color- and size-coded (see Figure 4 caption) rendering based in individual degree
values for every node. The relative importance of a number of genes becomes more evi-
dent, but still is not clear. It is now established that there are some (few) genes in such
network acting as master regulators (Baca-Lopez et al. 2012). This is still not evident
from the topology/visualization in panel B. If we analyze the network topological struc-
ture we can see some reasons behind this. In panel C we plot the degree distribution that
show an almost homogeneous behavior for two-plus orders of magnitude in the degree:
from genes with a few interactions to nodes with more than a hundred connections. This
scenario may be consistent with a highly structured hierarchic structure instead of the
dominion of a few master regulator genes. The average clustering coefficient distribution
in panel D follows a power-law-like behavior, indicating the relative importance of sec-
ond neighbor and higher order interactions in the structure of the network as opposed
to a neighbor dominated by a few hubs. Panel E displays the Shortest-Path length distri-
bution that turned-out to be a short-tailed bimodal (with maxima at distances 2 and 4),
indicating high network navigability.

If we now consider the MI-inference of a GRN network with the same gene expression
profiling data as the one in Figure 4, but constrained by the absolute (i.e. DPI;,; = 0)
application of the Data Processing Inequality (as in Figure 1), the network depicted in
Figure 5 is generated. Panels A-E are the same as in Figure 4. Panel A highlights the rel-
ative importance genes as master regulators. This is even more evident in panel B where
the role of MEF2C (big red node) and MNDA (big dark-orange node) (known master
regulators (Baca-Lépez et al. 2012) becomes evident, with important but bounded inter-
relationships with other genes. Panel C displays the degree distribution, a monotonic-
decaying power-law like function highlighting the importance of a few highly connected
nodes, whereas the vast majority of genes present low connectivity. Panel D shows the
average clustering coefficient distribution that has obviously dropped to zero since all
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Figure 4 Gene regulatory network associated with proliferation in primary breast cancer. Gene
Regulatory Network (GRN) inferred from differential gene expression profiling in 1191 whole genome
expression experiments for biopsy samples from breast cancer patients/controls (Baca-Lopez et al. 2012).
Panel A depicts the associated GRN. The relative importance of highly connected genes is not evident. Panel
B depicts the same network, nodes are size-coded and color-coded according with their connectivity degree
(big red nodes correspond with highly connected genes, whereas small green nodes are lowly connected
genes). Some genes apparently stand-out as relevant, however the intricate network structure does not
permit to tell indirect connections from direct ones, also a number of medium-level connected nodes add
complexity to the analysis. In panel € we can see the connectivity degree distribution: no definite trend is
evident -e.g. a power law, a stretched exponential, etc.- but the distribution remains somehow
homogeneous for the range between a few connections and more than a hundred connections. In panel D
we can see how the average clustering coefficient almost follow a power-law (2 = 0.85 for the power-law
fit) indicating that there may be a hierarchy related with how nodes associate. This could be an indication
that a number of not-so-strong interactions are present. Panel E presents the short path length distribution
that in this case is a bimodal (with maxima at distances of 2 and 4 links) with a short tail.
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Figure 5 Gene regulatory network associated with proliferation in primary breast cancer after DPI
pruning of indirect interactions. Panel A depicts the Breast Cancer associated GRN (Baca-Lopez et al. 2012)
(same as in Figure 4)after eliminating all indirect interactions by means of the application of the Data
Processing Inequality (DPI). The relative importance of highly connected genes is now more evident. The
network is basically founded on the role of two major hubs (that are also connected by means of
intermediate nodes) and a couple of medium-high connected nodes. Panel B depicts the same network,
nodes are size-coded and color-coded according with their connectivity degree. Two major hubs appear
corresponding to MEF2C (red node) and MNDA (dark orange node). These two genes have been recognized
as transcriptional master regulators in breast cancer (Baca-Lopez et al. 2012). In panel € we can see the
connectivity degree distribution that now resembles a power law distribution (too few nodes, however to
have a reliable statistic for the fit) indicating a relatively high importance of few nodes and a low importance
for most nodes. In panel D we can see how the average clustering coefficient has drop to zero. This is a clear
effect of pruning for indirect interactions, since the relative importance of a node is now given in terms of its
direct connections and not because of neighbor-by-neighbor influence. Panel E presents the short path
length distribution that again is a bimodal (with maxima at the same distances of 2 and 4 links) that however
shows a somehow larger tail than in Figure 4. This may be due to the fact that navigability in the network was
easier in the presence of indirect interactions.
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indirect interactions were pruned-out of the network. Interestingly enough, the Shortest-
Path length distribution grossly remains a bimodal (with the same maxima at distances
2 and 4) that however exhibits a long tail, a clear indicator of diminished network
navigability that results from eliminating shortcuts given by indirect interactions.

Network assessment in social networks

Scientific collaboration networks

In order to test the value of IT methods for community inference in the context of social
networks, we describe a Scientific Collaboration Network (SCN from now on) based on
the coauthorship history of the researchers of the National Institute of Genomic Medicine
of Mexico (referred as INMEGEN). INMEGEN is one of the National Institutes of Health
in Mexico and it was created in 2005, being so the second youngest institute of all 13.

The study of SCN dates back to the Erdés Number Project (Cardillo et al. 2006) and
due to the accessability of data through the Internet, it has become lately a common
place for those interested in social networks (Newman 2004). In this context, a very intu-
itive way of understanding scientific collaboration is by means of coauthorship, that is,
when two scientists have worked together in one or more publications. In order to build
the network, we used data of the publications reported by INMEGEN (as retrieved from
PubMed) from 2005 to the beginning of 2012. The network includes collaborations among
researchers of INMEGEN with themselves and with scientists from other institutions, as
well as those collaborations between the latter as long as they have also coauthored pub-
lications with researchers from INMEGEN within the same network. The edges of the
network are weighted according with their corresponding co-authorship probability (the
value of every link depends on the strength of collaboration between two scientists -a
MlI-like function inferred from the number of collaborations with a maximum value of 11
and a minimum of 1- ). This network is called Network 1 (Figure 6). From Network 1 we
obtained a subnetwork (Network 2 in Figure 7). Network 2 is also a collaboration network
of the researchers of INMEGEN but in which collaborators external to INMEGEN that
otherwise are not connected with each other have been left out. Finally, by applying IT
methods for network assessment to Network 2, and eliminating the weakest link between
the nodes of a triangle, we obtained one last network, (Network 3 shown in Figure 8).
From Network 3 we were able to identify four research groups and we built the collabora-
tion network for each one of them. Groups were defined by the fact that all their members
have coauthored at least two papers.

We paid special attention to general values such as number of nodes N, clustering
coefficient C, centrality degree, network centralization, and characteristic pathways (/).
Network 1 has N = 847, a very high clustering coefficient (C) = 0.925 (see Figure 6C) and
a network centralization of 0.221. The characteristic path length (/) is 3.09 (Figure 6E),
and the average number of neighbors is 24.8. Network 2 has N = 535, a (C) = 0.411
(Figure 7C), and a network centralization of 0.199. The characteristic path length (/) is
3.36 (Figure 7E), and the average number of neighbors is 4.3. Network 3 displayed the fol-
lowing values, N = 535, (C) = 0.341 (Figure 8C), and a network centralization of 0.197.
The characteristic path length (/) is 3.43 (Figure 8E), and the average number of neighbors
is 4.1.

Due to the shortness of the characteristic path length and its clustering coefficient, the
structure of Network 1 is close to that of a small-world network, which is not at all strange
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Figure 6 Scientific collaboration network of researchers at the National Institute of Genomic Medicine
(INMEGEN) and their extended partners - network 1. Panel A presents a SCN that includes collaboration
links among researchers of INMEGEN with each other and also with scientists from other institutions, also
collaborations between the latter as long as they have also coauthored publications with researchers from
INMEGEN within the same network. Panel B depicts the same network, nodes are size-coded and color-coded
according with their connectivity degree. The presence of a couple of well-connected individuals (bigger red
nodes) as well as a number of medium-high connected ones (orange mid-sized nodes) points out to the
existence of some kind of hierarchic structure. In panel € we can see the connectivity degree distribution
that shows a somehow anomalous behavior in the very low degree region, and then displays a typical
power-law behavior. This anomaly (a very low number of barely connected nodes) may be due to incidental
collaboration. In panel D we can see the average clustering coefficient that also presents a left-hand tail, most
likely also due to incidental collaboration and after this a power-law like behavior. Panel E presents the short
path length distribution, which is a quasi-symmetric unimodal with an average length of three steps.
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Figure 7 Scientific collaboration network of researchers at the National Institute of Genomic
Medicine (INMEGEN) and their extended partners - network 1. Panel A presents a SCN that includes
collaboration of INMEGEN researchers but in which collaborators external to INMEGEN -otherwise not
connected with each other- have been left out. We can see that this network presents a topology resembling
that of Network 1 but decimated in the number of links. Panel B depicts the same network, nodes are
size-coded and color-coded according with their connectivity degree. The presence of a couple of
well-connected individuals (bigger red nodes) as well as a number of medium-high connected ones (orange
mid-sized nodes) points out to the existence of some kind of hierarchic structure. In this Network, the
presence of localized hubs (that we may later identify as group leaders) is more evident. In panel C we can
see the connectivity degree distribution that shows a power-law behavior with no further appearance of the
incidental collaboration anomaly. In panel D we can see the average clustering coefficient displaying again a
power-law like behavior. Panel E presents the short path length distribution, which is also a quasi-symmetric
unimodal but with a less-defined expected value (between three and four steps) for the separation length.
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Figure 8 Scientific collaboration network of researchers at INMEGEN after DPI pruning of indirect
interactions - network 3. Panel A presents a SCN similar to Network 2 but indirect interactions have been
pruned-out, (same as in Figure 7) after eliminating all indirect interactions by means of the application of the
DPI. Network 3 is similar to Network 2, i.e. the effect of eliminating indirect interactions has a small impact. In
many triadic interactions (triangles in the network) two-out of three interactions presented the same value so
that no edge was eliminated. Panel B depicts the same network, nodes are size and color-coded according
to their connectivity degree. The presence of a couple of well-connected individuals (big red nodes) as well
as a number of medium-high connected ones (orange mid-sized nodes) points out to some kind of
hierarchic structure. Research groups are easily identified, yet a certain degree of collaboration between most
large groups is found. In panel € the connectivity degree distribution shows a power-law like behavior but
with a smaller high-degree tail than in Network 2. In panel D the average clustering coefficient displays again
a power-law like behavior. The reason for finite (non-zero) clustering coefficients is that a number of triangles
remained in the network for two of its edges presented equal strength of interaction. Panel E presents the
short path length distribution, which is unimodal but with a sharp expected separation length of 4. It is
noticeable that eventhough DPI-pruning did not eliminated all the triadic connections in the network, the
effect of network assessment to knock-out clear indirect interactions affected network navigability (average
path length went from a clear value of three in Network 1, to between three and four in Network 2 and then
to a clear value of three in Network 3).
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to collaboration networks and to SCN, as has been noted before (Yousefi-Nooraie et al.
2008). When compared to Network 2, its clustering coefficient decreases abruptly com-
pared to its value in Network I, and the characteristic path length increased slightly. Given
the difference between the clustering coefficients of these two networks, it lead us to sug-
gest that external collaboration plays a great deal in defining the small-world structure
of INMEGEN’s collaboration network, and most of all, it gives it a closure that makes it
easily navigable. By closure we mean that INMEGEN, being such a young institution, it
may still depend, to a degree, on external collaborators. Such dependency might be fueled
by the fact that INMEGEN doesn’t provide clinical services which means that it doesn’t
have the possibility to systematically recruit research subjects from where to get biolog-
ical samples, depending so, on other institutions for this purpose. This idea still remains
to be tested and is part of our future work.

The differences between Network 2 and Network 3, are minimal. Network 3 was inferred
by IT Methods for network assessment, even though, its clustering coefficient remained
almost unaffected -decreased from C= 0.411 in Network 2, to C= 0.341 in Network 3-
and the characteristic path length was also basically the same. This is an important result
because it means that most of the clustering was due to external collaboration as it was
noted already, and for Networks 2 and 3, triangle formation depends on having at least
two nodes from INMEGEN.

IT Methods applied to Network 2, eliminated what was left from the 'unbalanced’ trian-
gles and the weakest link between two nodes in a triangle was deleted, generating Network
3. This method made possible to identify more clearly the existence of four communities
that we could recognize as INMEGEN’s main research groups, with a leader (laboratory
or researcher leader) easily detectable. It is important to mention that there were other,
rather small groups, that have not been articulated to the main network and with a small
weight value in their collaborations links. These are hypothesized to be groups in process
of consolidation.

In order to analyze the structure of the four groups, we created a subnetwork for each
one, based on researchers that have collaborated in at least two publications. The sub-
networks made also possible to recognize different collaborative strategies among them.
Group 1 and 2, with an N = 79 and N = 139 respectively, were very similar, both dis-
played a high value for network centralization, over 0.750 and low clustering coefficient,
having Group 2 the highest (C) = 0.356. For these groups, there was a leader with a very
high &, and one or two very close collaborators. The difference between first and second
order collaborators was large, with the highest weight (corresponding approximately to
k = 9) between the leader and its first order collaborator and a lesser weight (implying k
= 2) with the lowest, with an average connectivity difference of 7. The structure of these
two networks could be interpreted as having a tendency towards a star-shaped structure.

In group 3, with N= 106, network centralization was not as high as in groups 1 and
2, although it remained important (Network centralization= 0.681). Noteworthy was the
clustering coefficient over (C) = 0.500 . According to these numbers, group 3 behaves
more like a group and the weight of collaborations is similar among its members.

Group 4 had the highest network centralization 0.938 as well as the highest clustering
coefficient (C) = 0.746. The network of group 4 depends on two members of INMEGEN
on which all collaborations are fixed. The situation for group 4 is that from all, this is the
extreme case of group behavior since there is a minimal connectivity degree difference
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of 1 between first and second order collaborators, that is, for most nodes, the weight of
collaboration among each other is the same (weight 2) and only few have a weight of 1,
and none of weight 3 or higher. It is important to mention that this group is different from
the other three because is the newest and the smallest (N = 64).

We created these networks -i.e. Networks 1, 2, and 3- in such a way because we wanted
to have a complete image of the collaborative network of INMEGEN, and to assess
INMEGEN’s internal community structure. Overall, there are some emerging groups and
senior researchers are still quite scarce. This may be the consequence of genomics being
a new field (as compared, for instance to other biomedical disciplines), and INMEGEN is
still in its infancy. If this is true, we will be able to see it in our future work when we com-
pared INMEGEN’s SCN with the networks of other National Institutes of Health, some
of them with more than 50 years of history. We would also like to model the collaboration
strategies followed by the different groups using agent based modeling.

Conclusions

When reconstructing the basic structure of a network, to being able to assess direct and
indirect interactions among nodes can be very useful and informative. One important
aspect when analyzing complex networks is to being able to distinguish and assess direct
from indirect interactions (even more, with regards to local interaction levels that may
shape the large scale structure and the functional features of such networks). In this paper
we have shown how an application of simple theorems of information theory (Hernandez-
Lemus and Rangel-Escarefio 2011) makes possible for researchers to grasp the nature of
the links in a clear-cut way. We discuss this in the context of both biological and social
networks. However, we believe that this same general method arguments may apply to
any network inferred by means of mutual information measures, and to some extent to
other networks inferred by other quantitative interaction measures. What is more, such
a general method may serve to the general purpose of unveiling similarities and differ-
ences between networks that are as different as it is a transcriptional network from a
collaborative one. It is important to recall that DPI-pruned networks may be consid-
ered along with non-DPI pruned (and even with relatives degrees of pruning as given
by different values of DPI,;) in order to assess for structural features of the network.
This is specially relevant if one is to consider the de-Novo functional discovery of the
role of specific individuals or the reassurance of already envisioned hypothesis along the
same lines.

The material presented here is intended to show some useful features of the application
of IT methods for network inference and assessment. The biological and social networks
chosen here were of different nature: different in size and, more important, in structure.
This may be seen by the fact that DPI-pruning of the biological network (that was much
larger than the social one) resulted in a tree-like structure (with no triangles and hence
with a null clustering coefficient), whereas in the social network, DPI-pruning uncover
different structural properties due to the presence of undecidable cases where three
edges were equally weighted. However, in both cases one important outcome of direct-
vs-indirect interaction analysis resulted, i.e. the presence (or better the visibility of the
presence) of key players: in one case transcription factor genes acting as master regulators
and in the other researchers identified as group leaders. Both studies revealed some sur-
prising elements -like the presence of novel master regulators, or some in-consolidation
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researchers that are really emerging as emerging group leaders- given the structure of the
direct interaction networks.

The study of the relationship between topological structure and functional organization
in complex networks is, of course, still in a very early stage of development. The prob-
lems and challenges that arise include not only the determination of direct and indirect
interactions and the role that some privileged nodes may play in network structure and
navigability. A thorough study may also considered the issues of community structure and
local connectedness. In the case of networks probabilistically inferred from experimental
data one may also take into account the role that inference errors, noise and asymptotics
may play. Further on, since complex networks are often dynamically adaptive systems,
driven both by their inner structure and their environmental constraints, the role that
dynamic evolution, fluctuations and adaptability may play will most surely also be fun-
damental to understand their behavior. We can only envisage what lies in the future: too
many challenges should still be tackled before reaching a complete understanding of the
behavior complex networks. However, we believe that information theoretical concepts
and tools may play a fundamental role when facing such complexities.
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