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Abstract

Purpose: Sampling an action according to the probability that the action is believed
to be the optimal one is sometimes called Thompson sampling.

Methods: Although mostly applied to bandit problems, Thompson sampling can also
be used to solve sequential adaptive control problems, when the optimal policy is
known for each possible environment. The predictive distribution over actions can
then be constructed by a Bayesian superposition of the policies weighted by their
posterior probability of being optimal.

Results: Here we discuss two important features of this approach. First, we show in
how far such generalized Thompson sampling can be regarded as an optimal strategy
under limited information processing capabilities that constrain the sampling
complexity of the decision-making process. Second, we show how such Thompson
sampling can be extended to solve causal inference problems when interacting with
an environment in a sequential fashion.

Conclusion: In summary, our results suggest that Thompson sampling might not
merely be a useful heuristic, but a principled method to address problems of adaptive
sequential decision-making and causal inference.

Keywords: Thompson sampling; Adaptive control; Bounded rationality;
Decision-making; Causal inference

Background
In a research paper from 1933, Thompson studied the problem of finding out which one
of two drugs was better when testing them on a patient population under the constraint
that as few people as possible should be subjected to the inferior drug during the course of
testing (Thompson 1933). Given a current (Bayesian) probability estimate P of one treat-
ment being better than the other, he suggested that it might be a good idea to adjust the
proportions of future test subjects that take the two drugs to the respective probabilities
P and 1 − P. This way one would not run into the danger of permanently cutting off all
future test subjects from a potentially superior treatment that so far seems inferior due
to statistical fluctuations, while only temporarily risking exposure to a potentially inferior
drug for a smaller proportion of the population. Randomizing actions based on the proba-
bility that this action is believed to be optimal when faced with an unknown environment
is now sometimes called Thompson sampling.
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Today, Thompson’s problem is generally thought of as a bandit problem that consists in
determining which lever to pull at which point in time when facing a set of one-armed
slot machines, each one having an unknown distribution over a reward variable (Russell
and Norvig 1995; Sutton and Barto 1998). In the case of known prior probabilities and
geometrically discounted future rewards, Gittins (1979) provides an optimal policy for
the bandit problem that maximizes the expected future cumulative discounted reward. In
contrast, Thompson sampling is usually considered as a heuristic approach to solve ban-
dit problems (Wyatt 1997; Granmo 2008, 2010; Asmuth et al. 2009; Graepel et al. 2010;
Scott 2010; May and Leslie 2011; Chapelle and Li 2011; Agrawal and Goyal 2011; Granmo
and Glimsdal 2013; May et al. 2012; Kaufmann et al. 2012; Russo and Roy 2013; Korda
et al. 2013; Bubeck and Liu 2013). However, the basic idea of Thompson sampling—that is,
sampling actions from a mixture distribution of policies according to their probability of
being optimal–can also be applied to solve more general problems in sequential adaptive
control (Dearden et al. 1998; Strens 2000; Ortega and Braun 2010a, 2010b, 2012a; Braun
and Ortega 2010; Osband and Russo 2013; Cao and Ray 2012; Tziortziotis et al. 2013a,
2013; Dimitrakakis 2013; Dimitrakakis and Tziortziotis 2013; Mellor and Shapiro 2013).
In this paper, our aim is to discuss some of the basic properties of Thompson sampling

as a modeling approach. In particular, we want to argue that

1. Thompson sampling can be considered as an application of Bayes’ rule for acting
where actions are treated as causally intervened random variables within the
framework of statistical causality.

2. Thompson sampling can be considered as a form of optimal adaptive control under
bounded rationality where limited information processing capabilities are modeled
by entropic search costs.

3. Thompson sampling provides a natural strategy for causal induction when
interacting with an environment with unknown causal structure.

Although the third section contains an algorithmic extension to previous work (Ortega
and Braun 2010a; 2010b), it should be emphasized that themain contribution of the paper
is not so much to present a novel algorithm, but to discuss basic properties of Thompson
sampling, in particular how it relates to the information-theoretic bounded rationality
model in (Ortega and Braun 2013), how this boundedness can be interpreted in terms
of sampling complexity, and how this method can be applied to solve problems of causal
inference.
The paper is structured as follows. In Section “Problem statement” we clarify the

problem statement and recapitulate the main result of (Ortega and Braun 2010b). In
Section “Decision-making with limited resources” we analyze the decision-making prob-
lem faced by agents that are unable to compute the single best policy. In Section “Causal
induction” we investigate how this approach can be applied to adaptive agents that need
to discover the causal structure of their environment. Finally, we discuss the significance
of these results in Section “Discussion”.

Methods
Problem statement

In an adaptive control problem a decision-maker faces an environment Qθ drawn from
a set of potential environments Q = {Qθ |θ ∈ �}. In general θ could be a continuous
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variable, but we restrict our exposition to the discrete case. Each environment Qθ can
be characterized by a set of conditional distributions Q(ot|θ , a≤t , o<t) that indicate the
probability of observing ot given past observations o<t = o1 . . . ot−1 and past actions
a≤t = a1 . . . at . This class of environments is very general, and it encompasses multi-
armed bandits, (partially observable) Markov decision processes and others –compare
Chapter 3 (Legg 2008). To allow for self-optimizing agents, the environment is typ-
ically assumed to be ergodic, so agents can recover from their mistakes –compare
Section 3.5 (Legg 2008). The decision-maker has perfectly fitting prediction models
P(ot|θ , a≤t , o<t) = Q(ot|θ , a≤t , o<t), but is uncertain about θ . The uncertainty about θ

can be represented by a prior distribution P(θ). The interaction proceeds as follows. First
an environment θ is sampled from P(θ). The agent picks an action a0 and receives an
observation o0, to which the agent responds with a1 and receives observation o1 etc. The
agent’s policy can be described by a set of conditional distributions P(at|o<t , a<t).

Problem statement: decision-theory

In order to solve the problem within the framework of maximum expected utility theory,
one requires

• a prior P(θ) over possible environments Qθ

• a class of prediction models P(ot|θ , a≤t , o<t)

• a utility function U(o≤T , a≤T ).

Then one can reduce the problem of the unknown environment to a problem with
known environment. Such a “known” environment can be created from the set of possible
environments by marginalizing over the parameter of the possible environments, thus,
obtaining the Bayesian mixture distribution, where

P(ot|o<t , a≤t) =
∑
θ

P(θ |o<t , a≤t)P(ot|θ , o<t , a≤t). (1)

The adaptive control problem is then solved by finding the optimal policy p(at|a<t , o<t) =
δ(at − a∗

t ), where

a∗
t = argmax

at

∑
ot

P(ot|o<t , a≤t)max
at+1

∑
ot+1

P(ot+1|o≤t , a≤t+1) · · ·

· · ·max
aT

∑
oT

P(oT |o<T , a≤T )U(o≤T , a≤T ) (2)

maximizes the expected utility under the mixture distribution (Hutter 2004).
Equations (1) and (2) define a Bayesian adaptive control problem (Martin 1967; Duff
2002). This problem formulation becomes quickly intractable, as the number of reachable
information states grows exponentially in the time horizon (Duff 2002).

Problem statement: probability theory & statistical causality

Ignoring the notion of utility for a moment and treating actions purely as (causally inter-
vened) random variables (Pearl 2000), one could think of another kind of adaptive control
problem that is defined entirely in probabilistic and causal terms. This requires the
following ingredients
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• a prior P(θ) over possible environments Qθ

• a class of prediction models P(ot|θ , a≤t , o<t)

• a class of policy models P(at|θ , a<t , o<t)

such that for every possible environment indexed by θ there is a perfectly fitting
predictor P(ot|θ , a≤t , o<t) = Qθ (ot|a≤t , o<t) and a desirable custom-builta policy
P(at|θ , a<t , o<t). The problem statement is: What is the next action at given the uncer-
tainty over θ and given the history of previous actions â<t and previous observations
o<t? As for any random variable, answering this question for the random variable
at simply requires computing the predictive distribution conditioned on the past,
that is

P(at|â<t , o<t) =
∑
θ

P(at|θ , â<t , o<t)P(θ |â<t , o<t). (3)

As there can be only one action at any one time, single actions can be obtained as
samples from P(at|â<t , o<t). Importantly, sampling from P(at|â<t , o<t) is equivalent to
first sampling a random belief θ from the posterior P(θ |â<t , o<t) and then sampling an
action from P(at|θ , â<t , o<t). This componentwise sampling from a mixture distribution
is known as hierarchical sampling and corresponds here to a generalized Thompson sam-
pling procedure, where first a random belief is sampled and then the associated policy
with respect to this belief is executed. If we assume now that each of the custom-built poli-
cies is optimal in their respective environments, we effectively select an action according
to the probability that it is the optimal action, because we first sample the environment θ

according to its posterior probability of being the true environment and then we perform
the policy that is optimal in that environment. The question is how this problem formula-
tion can be reconciled with a decision-theoretic problem statement that involves utilities.
This is the topic of Section “Decision-making with limited resources”.

Statistical causality

While both actions and observations are treated as random variables in (3), there is
an important difference between actions and observations. Observations are produced
by the environment and can be used to update the agent’s state of knowledge about
the environment. In contrast, actions are set by the agent itself and hence they do not
provide information about the environment. This distinction becomes crucial when con-
ditioning on the history of actions and observations. The theory that deals with the
distinction between exogenous and endogenous information is statistical causality (Pearl
2000; Glymour et al. 2000).

What is a causal intervention?

A typical example for causal intervention is the manipulation of a barometer (Pearl 2000).
In a barometer the atmospheric pressure changes the height of the mercury: if it rises,
we expect good weather; and if it drops rapidly, we expect rain. A simple Bayesian model
captures this relation:

P(w|b) = P(b|w)P(w)

P(b)
,
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where w and b are the weather and the Barometer variables respectively, P(w) is the prior
probability of the weather (e.g. good or bad) and P(b|w) is the likelihood of the barometer
change given the weather. The posterior P(w|b) allows us to infer the weather from the
barometer reading.
Now, imagine you decide to change the level of the mercury yourself, say (using a bit

of imagination) by means of a pressurizing device. Now, you set the value of the ran-
dom variable—and intuition tells us that we cannot predict the weather anymore from
the barometer reading. Apparently, our previous Bayesian model is useless now. This
shouldn’t come as a surprise, as our intervention effectively changed the relation between
the barometer and the weather.
Mathematically, we can model the causal relationship between different random vari-

ables by a particular factorization of the joint probability distribution into conditional
probabilities reflecting generative mechanisms, where causes are in the conditional and
effects in the argument. In our example the weather causes the barometer to rise
and fall and not the other way around, that is in causal terms we have P(b,w) =
P(b|w)P(w) and not P(b,w) = P(w|b)P(b), even though in purely probabilistic terms
the two factorizations are of course equivalent. The causal factorization becomes
important when modifying the causal relationships by intervention, as in our exam-
ple. Manipulating the barometer setting directly severs the causal between weather and
barometer. Consequently, we have to modify our joint probability distribution from
P(b,w) to

P(b̂,w) = δ(b)P(w),

that is, where P(b|w), viewed as a generative mechanism, has been replaced by δ(b),
thereby rendering the two random variables independent. The hat-notation (due to
(Pearl 2000)) is just a shorthand referring to this particular transformation of the
probability distribution. When we evaluate the posterior under the intervention b̂,
we get

P(w|b̂) = P(w, b̂)∑
w P(w, b̂)

= 1 · P(w)

1
= P(w).

In other words, we don’t gain knowledge about the weather—as expected. Notice
that intervening the alternative factorization, P(b̂,w) = δ(b)P(w|b), would give a dif-
ferent result that is inconsistent with our causal story: we have assumed that the
mercury level of the barometer depends functionally on the weather, and not the
other way around. The reason for this special treatment of actions is that when
we set the value of a random variable ourselves, we change Nature’s probability
law.

Causal interventions in Thompson sampling

To calculate the effect of an intervention, the causal model has to be known, that is the
unique factorization of the joint distribution into conditional probabilities matching the
causal dependencies over the random variables. In our case, the causal dependencies are
straightforward: first, the environment secretly chooses a true parameter θ∗ ∈ �, and
then the interactions a1, o1, a2, o2, . . . follow chronologically. This causal model allows us
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to study the effect of interventions in the problem statement given in (3). We start by
re-expressing the posterior P(θ |â<t , o<t) as

P(θ |â<t , o<t)

(1.)= P(θ , â<t , o<t)∑
θ ′ P(θ ′, â<t , o<t)

(2.)= P(θ)
∏t

k=1 P(âk|θ , â<k , o<k)P(ok|θ , â≤k , o<k)∑
θ ′ P(θ ′)

∏t
k=1 P(âk|θ ′, â<k , o<k)P(ok|θ ′, â≤k , o<k)

(3.)= P(θ)
∏t

k=1 P(âk|θ , a<k , o<k)P(ok|θ , a≤k , o<k)∑
θ ′ P(θ ′)

∏t
k=1 P(âk|θ ′, a<k , o<k)P(ok|θ ′, a≤k , o<k)

(4.)= P(θ)
∏t

k=1 P(ok|θ , a≤k , o<k)∑
θ ′ P(θ ′)

∏t
k=1 P(ok|θ ′, a≤k , o<k)

, (4)

where we first expand the probabilities in terms of the joint distribution, second rewrite
the joint distribution as the causal factorization, third remove the intervention tags from
the intervened random variables that are in the probability conditions (Pearl’s second rule
of do-calculus (Pearl 2000)), and fourth replace each conditional probability having an
intervened variable in the argument by a delta function over its chosen value—compare
Chapter 4.2 in (Pearl 2000).
These equations show that beliefs are updated only using past observations, and that

past actions provide no further evidence. Intuitively, the reason for this is that the agent
can be surprised about his past observations and learn from them, but he cannot be sur-
prised about his own actions chosen by himself in the past. Also, due to Pearl’s second law
of do-calculus (Pearl 2000) we have

P(at|θ , â<t , o<t) = P(at|θ , a<t , o<t). (5)

Using (3), (4) and (5), we arrive at the desired result, that is the predictive distribution for
at ∈ A given by

P(at|â<t , o<t) =
∑
θ

P(at|θ , a<t , o<t)P(θ |â<t , o<t), (6)

obtained only by applying probability theory and causal calculus.

Results
Decision-making with limited resources

The difference between the random belief model supposed by Thompson sampling and
the standard maximum expected utility model for decision-making is highlighted by con-
trasting two simple decision scenarios depicted in Figure 1. The goal is to predict the
outcome when throwing one of two possible biased coins. A rational decision maker
places bets (shown inside speech bubbles) such that his subjective expected utility is max-
imized. These subjective beliefs are delimited within dotted boxes. A Thompson sampling
agent first samples a random belief and then chooses the best prediction with respect to
this belief.
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a)

b)

Figure 1 Comparison between (a) a fully rational decision maker and (b) a decision maker with
random beliefs. There are two biased coins. The probability of throwing the first coin is 1

4 , the probability of
throwing the second coin is 3

4 . The first coin has a probability of 1
4 for the outcome Head and the second

coin has a probability of 3
4 for Head. The decision-maker has to predict the most likely outcome. A correct

guess is rewarded with $1, an incorrect guess yields $0.

The difference between the two becomes clear by inspecting the expected utility in each
case: they are

max
P′

∑
θ

P(θ)

{∑
o

P′(a|θ)P(o|θ , a)U(o)
}
, (a)

and
∑
θ

P(θ)max
P′

{∑
o

P′(a|θ)P(o|θ , a)U(o)
}

(b)

respectively, where the labels (a) and (b) correspond to the labels in Figure 1. Here it is
clearly seen that the difference between the two lies in the order in which we apply the
expectation (over the environment parameter) and the maximization operator. It should
also be noted that the expected utility of (a) is an upper bound on the expected utility of
(b). Yet, both cases can constitute optimal decisions depending on constraints. In (a), the
decision-maker picks his action taking into account the uncertainty over the bias, while
in (b), the decision-maker picks his action only after his beliefs over the coin bias are
instantiated—that is, he is optimal w.r.t. his random beliefs. Here we consider how this
optimality w.r.t. random beliefs can be considered as a form of optimal decision-making
under information processing constraints.
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Modeling bounded rational decision-making

Here we consider a particular information-theoretic model of bounded rational decision-
making that formalizes limited information processing resources by a variational prin-
ciple that trades off expected utility gains (or losses) and entropic information costs
(Ortega 2011a; Ortega and Braun 2011, 2012a, 2013). Information processing costs are
usually ignored in the study of perfectly rational decision-makers. Given a choice set X
with choices x ∈ X and utilities U(x), a perfectly rational decision-maker would always
choose the best option x∗ = argmaxx U(x)—presupposing there is a unique maximum.
In general, a bounded rational decision-maker is unable to pick out the best option with
certainty, and his choice can be described by a probability distribution P(x) reflecting
uncertainty. Improving the choice strategy P(x) can be understood as a costly search
process.
Let us assume the initial strategy of the decision-maker can be described by a prob-

ability distribution P0(x). The search process for the optimum transforms this initial
choice into a final choice P(x). In case of the perfectly rational decision-maker the final
choice is P(x) = δx,x∗ . In the general case of the bounded rational decision-maker
the search is costly and he will not be able to afford such a stark reduction in uncer-
tainty. Assuming that search costs are real-valued, additive and higher for rare events
(Ortega and Braun 2010c), it can be shown that the cost of the search is determined
by the information distance DKL between P0 and P, that is DKL = ∑

x P(x) log P(x)
P0(x) .

Both Bayesian search (Jaynes 1985) and Koopman’s random search (Stone 1998) are
compatible with these assumptions, as well as energetic costs that would have to
be paid by a Maxwellian demon for reducing uncertainty in statistical physical sys-
tems (Ortega and Braun 2013). How this information-theoretic model of search costs
relates to computational resources such as space and time complexity is still an open
problem (Vitanyi 2005).

Simple decisions

The decision process is modeled as a transformation of a prior choice probability P0 into
a posterior choice probability P by taking into account the utility gains (or losses) and the
transformation costs arising from information processing, such that

P = argmax
P̃

{∑
x

P̃(x)U(x) − 1
α

∑
x

P̃(x) log
P̃(x)
P0(x)

}
, (7)

where the x ∈ X are the possible outcomes, P0(x) are their prior probablities, U(x)
are their utilities. The inverse temperature α ≥ 0 can be regarded as a rational-
ity parameter that translates the cost of information processing measured in units of
information into units of utility. If the limits in information processing capabilities are
given as a constraint DKL(P||P0) ≤ K with some positive constant K, then α is deter-
mined as a Lagrange multiplier. The maximizing distribution P̃ = P is the equilibrium
distribution

P(x) = 1
Zα

P0(x)eαU(x), where Zα =
∑
x

P0(x)eαU(x), (8)

and represents the choice probabilities after deliberation—see Theorem 1.1.3 (Keller
1998) and (Ortega and Braun 2013) for a proof. The value V of the choice set X under
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choice probabilities P can be determined from the same variational principle

V [P] = max
P̃

{∑
x

P̃(x)U(x) − 1
α

∑
x

P̃(x) log
P̃(x)
P0(x)

}

= 1
α
log

(∑
x

P0(x)eαU(x)
)

= 1
α
logZα . (9)

For the two different limits of α, the value and the equilibrium distribution take the
asymptotic forms

α → +∞ 1
α
logZα = max

x
U(x) P(x) = Umax(x) (perfectly rational)

α → 0 1
α
logZα =

∑
x

P0(x)U(x) P(x) = P0(x) (irrational)

where Umax is the uniform distribution over the maximizing subset Xmax := {x ∈ X :
U(x) = maxx′ U(x′)}. It can be seen that a perfectly rational agent with α → ∞ is
able to pick out the optimal action—which is a deterministic policy in the case of a sin-
gle optimum—, whereas finitely rational agents have stochastic policies with non-zero
probability of picking a sub-optimal action.
The model of bounded rational decision-making also lends itself to an interpretation in

terms of sampling complexity. If we use a rejection sampling scheme to obtain samples
from p(x) by first sampling from p0(x), we can ask how many samples we will need on
average from p0 to obtain one sample from p. In this scheme, we produce a sample x ∼
p0(x) and then decide whether to accept or reject the sample based on the criterion

u ≤ eαU(x)

eαT
, (10)

where u is drawn from the uniform U [0; 1] and T is the acceptance target value with
T ≥ maxx U(x). The equality holds for themost efficient sampler, but requires knowledge
of the maximum. With this sampling scheme, the accepted samples will be distributed
according to Equation (8). The average number of samples needed from p0 to produce
one sample of p is then

�Samples = 1∑
x p0(x)

eαU(x)

eαT
= eαT

Zα

. (11)

The important point about Equation (11) is that the average number of samples increases
with increasing rationality parameter α. In fact, the average number of samples will grow
exponentially for large α when T > maxx U(x), as

eαT

Zα

α→∞−−−→ eα(T−U(x∗))

P0(x∗)
,

where x∗ = argmaxU(x). It can also be straightforwardly seen that

�Samples ≥ eDKL(p||p0) = eα
∑

x p(x)U(x)

Zα

(12)
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because
∑

x p(x)U(x) ≤ T , that is the exponential of the Kullback-Leibler divergence
provides a lower bound on the average number of samples.

Decisions in the presence of latent variables

Tomodel a Thompson sampling agent, we need at least a two-step decision with a variable
x that has to be chosen by the agent, and a variable θ that is chosen by the environ-
ment. In the example described in Figure 1, the variable x is the agent’s prediction for
the outcome of a coin toss, the variable θ indicates nature’s choice which one of the two
coins is tossed. The agent’s prediction can take on the values x = H and x = T corre-
sponding to the outcomes Head and Tail. The variable θ takes on the two values θ = 1

4
and θ = 3

4 corresponding to the biases of the two coins. The prior probability over θ

is p0
(
θ = 1

4
) = 1

4 and p0
(
θ = 3

4
) = 3

4 . The expected rewards for all combinations of x
and θ are then U

(
x = H , θ = 1

4
) = 1

4 , U
(
x = T , θ = 1

4
) = 3

4 , U
(
x = H , θ = 3

4
) = 3

4 and
U

(
x = T , θ = 3

4
) = 1

4 .
In the case of two-step decisions, the variational problem can in general be formulated

as a nested expression (Ortega and Braun 2011, 2012a, 2013)

arg max
p̃(x,θ)

∑
x

p̃(x)
[
U(x) − 1

α
log

p̃(x)
p0(x)

+
∑
θ

p̃(θ |x)
[
U(x, θ) − 1

β
log

p̃(θ |x)
p0(θ |x)

]]
. (13)

with the two different rationality parameters α and β for the two different variables x and
θ . Limited information processing resources with respect to these variables can also be
thought of as different degrees of control. For example, if α assumed a large value, the
decision-maker could basically hand-pick a particular x, or if θ was determined by a coin
toss that the agent cannot influence, we could model this by setting β to zero. The utility
can in general depend on both action and observation variables. However, since the action
by itself does not yield a reward in our case, we have U(x) ≡ 0. Moreover, we see that
in our case, nature’s probability of flipping either coin does not actually depend on the
agent’s prediction, so we can replace the conditional probabilities p(θ |x) by p(θ). We have
then an inner variational problem:

argmax
p̃(θ)

∑
θ

p̃(θ)

[
− 1

β
log

p̃(θ)

p0(θ)
+ U(x, θ)

]
(14)

with the solution

p(θ) = 1
Zβ(x)

p0(θ) exp (βU(x, θ)) (15)

and the normalization constantZβ(x) = ∑
θ p0(θ) exp (βU(x, θ)) and an outer variational

problem

argmax
p̃(x)

∑
x

p̃(x)
[
− 1

α
log

p̃(x)
p0(x)

+ 1
β
logZβ(x)

]
(16)

with the solution

p(x) = 1
Zαβ

p0(x) exp
(

α

β
logZβ(x)

)
(17)
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and the normalization constant Zαβ = ∑
x p0(x) exp

(
α
β
logZβ(x)

)
. From Equation (17)

we can derive both the perfectly rational decision-maker and the Thompson sampling
agent. To simplify, we assume in the following that the agent has no prior preference for
x, that is p0(x) = U(x).
The perfectly rational decision-maker is obtained in the limit α → ∞ and β → 0.

If we first take the limit limβ→0
1
β
logZβ(x) = ∑

θ p0(θ)U(x, θ), a decision-maker with
rationality α chooses x with probability

p(x) = eα
∑

θ p0(θ)U(x,θ)

Zαβ

. (18)

The perfectly rational expected utility maximizer as depicted in Figure 1a is then obtained
from Equation (18) by taking the limit α → ∞.
In contrast, the Thompson sampling agent is obtained when β = α. In this case, the

choice probability for x is given by

p(x) =
∑
θ

p0(θ)

eαU(x,θ)

Zα(x)
. (19)

The resulting agent is a probabilistic superposition of agents that act optimally for
any given θ as depicted in Figure 1b. It can be seen that in Equation (19) and in
Equation (18) the order of the expectation operation and the (soft-)maximization opera-
tion are reversed.
Again we can interpret this formalism in terms of sampling complexity. Here we should

accept a sample x ∼ p0(x) if it fulfils the criterion

u ≤ eα
1
β
logZβ(x)

eαT
=

[
Zβ(x)
eβT

] α
β

, (20)

where u ∼ U [0; 1] and T ≥ maxxmaxθ U(x, θ). From Equation (11) we know that the
ratio Zβ(x)/eβT is the acceptance probability of θ ∼ p0(θ). In order to accept one sample
from x, we thus need to accept α

β
consecutive samples of θ , with acceptance criterion

u ≤ eβU(x,θ)

eβT
(21)

with u ∼ U [0; 1] and T as set above. Since α � β we can assume α ≈ Nβ with
N ∈ N, and we can see easily that the perfectly rational agent will require infinitely
many θ samples (α → ∞ and β → 0) to obtain one sample of x, whereas the
Thompson sampling agent will only require a single sample (α = β). The Thompson
sampling agent is therefore the agent that can solve the optimization problem of
Equation (16) for a given α with the least amount of samples. This can also be seen
from Equation (18), when doing the Monte Carlo approximation

∑
θ p0(θ)U(x, θ) ≈

1
N

∑
i U(x, θi) by drawing N samples θi ∼ p0(θi). For infinitely many samples, the aver-

age approximates the expectation, for a single sample we can rewrite Equation (18)
into Equation (19). This sampling procedure also allows estimating the upper and lower
bounds of the optimal utility (Tziortziotis et al. 2013). Of course, the Thompson sam-
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pling agent will not achieve the same expected utility as the perfectly rational agent.
But both agents can be considered optimal under particular information processing
constraints.

Causal induction

A generalized Thompson-sampling agent can be thought of as a probabilistic super-
position of models θ , where each model θ is characterized by a likelihood model
P(ot|θ , a≤t , o<t) and a policy model P(at|θ , a<t , o<t). In previous applications we assumed
that all models θ have the same causal structure, i.e. considering multivariate random
variables at and ot , we assumed that the same variables at are intervened for all θ and
the same causal model is used to predict the consequences of these interventions on
the observational variables ot . However, this need not be the case. In principle, different
models θ could represent different causal structures and suggest intervention of differ-
ent variables. Such a setup can be used for causal induction as illustrated in the following
example.

Imagine we are working on a medical treatment that involves two gene sites X and Y,
each of which can be active or inactive. We encode the ‘on’ and ‘off ’ states of X as
X = x and X = ¬x and similarly Y = y and Y = ¬y to denote the ‘on’ and ‘off ’ states of
Y. Assume we are unsure about the causal mechanism between the two variables, that
is we are unsure whether the activity of X influences the activity of Y or the other way
around. Formally, we are interested in the explanatory power of two competing causal
hypotheses: either ‘X causes Y’ (� = θ ) or ‘Y causes X’ (� = ¬θ ). Assume our goal is
to have Y in an active state, but that it is much cheaper and easier to manipulate X
instead of Y. This leaves us with the following policies. If X causes Y we prefer to
manipulate X, because it is cheap and easy. If Y causes X we have no other choice, but
to directly manipulate Y. When manipulating either gene, we can be 100% sure that the
new state of the gene is set by us, but we only have a 50% chance that the state will be
‘on’. Assume not manipulating either variable is not an option, because then both gene
sites stay inactive. The question is how should we act if we do not know the causal
dependency?

One of the main methods to deal with problems of causal inference is the framework of
causal graphical models (Pearl 2000). Given a graph that represents a causal structure, we
can intervene this graph and ask questions about the probabilities of the variables in the
graph. However, in causal induction we would like to discover the causal structure itself,
that is we would like to do inference over a multitude of graphs representing different
causal structures (Heckerman et al. 1999). If one would like to represent the problem of
causal discovery graphically, the main challenge is that the model � is a random variable
that controls the causal structure itself. However, as argued in (Ortega 2011), this diffi-
culty can be overcome by using a probability tree to model the causal structure over the
random events. Probability trees can encode alternative causal realizations, and in par-
ticular alternative causal hypotheses (Shafer 1996). For instance, Figure 2a encodes the
probabilities and functional dependencies among the random random variables of the
previous problem.
In a probability tree, each (internal) node is a causal mechanism; hence a path

from the root node to one of the leaves corresponds to a particular sequential real-
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a) b)

Figure 2 Panel a: An exemplary probability tree to represent the agent’s prediction model about its
environment. The probability of a realization (written under the leaves) is calculated by multiplying the
probabilities starting from the root until a leave is reached. The immediate children of any note resolve the
value of a single random variable. Note that the two hypotheses are statistically indistinguishable. Panel b:
The probability tree resulting from (a) after intervening x̂.

ization of causal mechanisms. The logic underlying the structure of this tree is as
follows:

1. Causal precedence: A node causally precedes its descendants. For instance, the
root node corresponding to the sure event � causally precedes all other nodes.

2. Resolution of variables: Each node resolves the value of a random variable. For
instance, given the node corresponding to � = θ and X = ¬x, either Y = y will
happen with probability P(y|θ ,¬x) = 1

4 or Y = ¬y with probability
P(¬y|θ ,¬x) = 3

4 .
3. Heterogeneous order: The resolution order of random variables can vary across

different branches. For instance, X precedes Y under � = θ , but Y precedes X
under � = ¬θ . This is precisely how we model competing causal hypotheses.

While the probability tree represents the agent’s subjective model explaining the order in
which the random values are resolved, it does not necessarily correspond to the temporal
order in which the events are revealed to us. So for instance, under hypothesis � = θ , the
value of the variable Y might be revealed before X, even though X causally precedes Y ;
and the causal hypothesis �, which precedes both X and Y, is never observed.
Consider a Thompson sampling agent that uses the beliefs outlined in Figure 2 that runs

a single experiment. The agent does so by first manipulating X and observing Y :

1. Manipulating X: First, the agent instantiates his random beliefs by sampling the
value of � from the prior:

P(� = θ) = P(� = ¬θ) = 1
2
.

Assume that the result is θ . Treating θ as if it was the true parameter, he proceeds
to sample the action from P(X|θ) given by

P(X = x|θ) = P(X = ¬x|θ) = 1
2
,

as indicated in the left branch of the probability tree. Assume that outcome is x, and
this is the action that the agent executes. Because of this, the agent has to update its
beliefs first by intervening the probability tree for x̂ and second by conditioning on
x. The intervention x̂ is carried out by replacing all the nodes in the tree that resolve
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the value of X with new nodes assigning probability one to x and zero to ¬x.
Figure 2b illustrates the result of this intervention. The posterior is then given by

P(θ |x̂) = P(x̂|θ)P(θ)

P(x̂|θ)P(θ) + P(x̂|¬θ)P(¬θ)
= 1 · 1

2
1 · 1

2 + 1 · 1
2

= 1
2
.

In other words, the agent has switched on X, and has so far learned nothing from
this fact.

2. Observing Y: Now, the agent observes the activity of Y, and assume that it is active,
i.e. Y = y. Then, the posterior beliefs of the agent are given as

P(θ |x̂, y) = P(y|θ , x̂)P(x̂|θ)P(θ)

P(y|θ , x̂)P(x̂|θ)P(θ) + P(x̂|¬θ , y)P(y|¬θ)P(¬θ)

=
3
4 · 1 · 1

2
3
4 · 1 · 1

2 + 1 · 1
2 · 1

2
= 3

5
.

Since P(θ) < P(θ |x̂, y), the agent has gathered evidence favoring the hypothesis
“X causes Y”. This was only possible because the intervention introduced a
statistical asymmetry among the two hypotheses that did not exist in the beginning.
In comparison, if the action is not treated as an intervention, then the posterior is

P(θ |x, y) = P(y|θ , x)P(x|θ)P(θ)

P(y|θ , x)P(x|θ)P(θ) + P(x|¬θ , y)P(y|¬θ)P(¬θ)

=
3
4 · 1

2 · 1
2

3
4 · 1

2 · 1
2 + 3

4 · 1
2 · 1

2
= 1

2
= P(θ),

that is, the agent doesn’t learn anything just from observing. This also highlights
the importance of interventions (Box 1966).

Naturally, multiple interventions and observations can be executed in consecution. In
this case Thompson sampling is used in each time step to decide which policy model to
use, which implies the decision which variables to intervene. Then, after the interven-
tion, all variables are revealed simultaneously at every time step of the inference process.
The update of the observational probabilities is done the same way as in the one step
case, taking into account which variables were intervened. A simulation of the repeated
Thompson sampling process for causal induction of our example system is shown in
Figure 3. This very simple example contains the principles of causal induction using
Thompson sampling. Of course, more complex causal structures require richer model
classes as is customary in Bayesian modeling. But importantly, the essence of causal
induction is already contained in our simple illustration.

Discussion
The main contribution of the present paper is to show in how far generalized Thompson
sampling can be regarded as an optimal solution method for adaptive decision-making
in the presence of information-processing constraints and how this framework can be
extended to solve problems of causal induction. We previously proposed Equation (3) as
a Bayesian rule for acting in (Ortega and Braun 2010a, 2010b) that optimally solves the
adaptive coding problem for actions and observations. In practice, it is implemented by
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Figure 3 Thompson sampling for causal induction. (Left) Posterior distribution P(θ |·) for 10 runs when the
true system is given by � = θ . (Right) Posterior distribution P(θ |·) for 10 runs when the true system is given
by � = ¬θ . In both cases the agent is able to identify the causal structure of the environment with high
confidence when P(θ | · · · ) is close to one or zero respectively.

sampling an environment parameter θ̂t for each time step from the posterior distribu-
tion P(θ |â<t , o<t), and then treating it as if it was the true parameter—that is, issuing the
action at from P(at|θ̂t , a<t , o<t). This action-samplingmethod where beliefs are randomly
instantiated was first proposed as a heuristic in (Thompson 1933) and is now known as
Thompson sampling. Importantly, this method can be generalized and applied to solve
general sequential adaptive decision-making problems.
So far Thompson sampling has been mainly applied to multi-armed bandit problems.

Multi-armed bandits can be represented by a parameter θ that summarizes the statis-
tical properties of the reward obtained for each lever. Reward distributions range from
Bernoulli to Gaussian (with unknown mean and variance), and they can also depend on
the particular context or state (Graepel et al. 2010; May and Leslie 2011; Granmo 2010;
Scott 2010). In particular, the work of (May and Leslie 2011) and the work of (Granmo
2010) prove asymptotic convergence of Thompson sampling. The performance of ban-
dit algorithms has also been studied in terms of the rate of growth of the regret (Lai
and Robbins 1995), and recent bandit algorithms have been shown to match this lower
bound (Cappé et al. 2013), including Thompson sampling algorithms for Bernoulli ban-
dits (Kaufmann et al. 2012). Also, the work of (Chapelle and Li 2011) presents empirical
results that show Thompson sampling is highly competitive, matching or outperforming
popular methods such as UCB (Lai and Robbins 1995; Auer et al. 2002).
Another class of problems, where Thompson sampling has been applied in the past,

are Markov decision processes (MDPs). MDPs can be represented by parameterizing the
dynamics and reward distribution (model-based) (Strens 2000) or by directly parameter-
izing the Q-table (model-free) (Dearden et al. 1998; Ortega and Braun 2010a). The first
approach samples a full description of an MDP, solves it for the optimal policy, and then
issues the optimal action. This is repeated in each time step. The second approach avoids
the computational overhead of solving for the optimal policy in each time step by directly
doing inference on the Q-tables. Actions are chosen by picking the one having the highest
Q-value for the current state. The same ideas can also be applied to solve adaptive con-
trol problems with linear system equations, quadratic cost functions and Gaussian noise
(Braun and Ortega 2010).
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Optimality

While maximum expected utility is formally appealing as a principle for the construction
of adaptive agents, its strict application is in practice often problematic. This is mainly
due to two reasons:

1. Computational complexity. The computations required to find the optimal
solution (for instance, the computational complexity of solving the Bellman
optimality equations) are prohibitive in general and scale exponentially with the
length of the horizon. The problem is tractable only in very special cases under
assumptions that reduce the effective size of the problem.

2. Causal precedence of policy choice. The choice of the policy has to be made before
the interaction with the environment starts. That is, an agent has to have a unique
optimal policy before it has even interacted once with the environment. An optimal
policy constructed by the maximum expected utility principle is therefore a very
risky bet, as a lot of resources have to be spent before any evidence exists that the
underlying model or prior is adequate.

Because of these two reasons, it is practically often impossible to apply the maximum
expected utility principle. This has led to the development of theories of bounded
rational decision-making that take the information processing limitations of decision-
makers into account. The modern study of bounded rationality was famously broached
by Simon (1956, 1972, 1984) and has since been extensively investigated in psy-
chology (Gigerenzer and Selten 2001; Camerer 2003), cognitive science (Howes et al.
2009; Janssen et al. 2011; Lewis et al.), economics (Aumann 1997; Rubinstein 1998;
Kahneman 2003), game theory (McKelvey and Palfrey 1995, 1998; Wolpert 2004), polit-
ical science (Jones 2003), industrial organization (Spiegler 2011), computer science and
artificial intelligence research (Lipman 1995; Russell 1995; Russell and Subramanian
1995). Different conceptions of bounded rationality are divided as to whether bounded
rational behavior is thought to be fundamentally non-optimizing or whether it can
be expressed as a (constrained) optimization problem and as to whether it involves
any kind of meta-reasoning (Klein 2001). While the variational formulation in the free
energy can also be thought of as a constrained optimization problem, this optimiza-
tion is only implicit in an agent that runs an anytime algorithm to obtain samples that
directly optimize the original (unconstrained) utility function. The average number
of samples that can be afforded is determined by an inverse temperature parameter,
such that the search for the optimum is aborted after some time, thereby generating
some kind of satisficing solution. The free energy formulation of bounded rational-
ity also allows reinterpreting a wider research program that has investigated relative
entropy as a particular cost function for control (Kappen 2005; Todorov 2006, 2009;
Theodorou et al. 2010; Peters et al. 2010; Braun and Ortega 2011; Kappen et al. 2012)
and has inspired the formulation of optimal control problems as inference problems
(Tishby and Polani 2011; Kappen et al. 2012; Rawlik et al. 2012). In Section “Deci-
sion-making with limited resources” we have argued that Thompson sampling can be
regarded as an instantiation of free energy optimizing bounded rationality requiring
the minimal amount of samples of the latent variable θ in the decision-making pro-
cess determining the next action. An agent that follows such a Thompson sampling
strategy randomly samples beliefs θ and acts optimally with respect to these random

2014, 2:2
http://www.casmodeling.com/content/2/1/2

http://www.casmodeling.com/content/2/1/2


Ortega and Braun Complex Adaptive SystemsModeling Page 17 of 23

beliefs. In contrast, a perfectly rational agent optimizes his utility over the entire belief
tree.
Policy Uncertainty. Given a problem specification in terms of the predictive model

and the utility function, we can think about policy uncertainty in terms of policy search
methods. The task of a policy search method is to calculate a policy that approximates
the optimal policy. More specifically, let π be a parameter in a set 
 indexing the set
of candidate policies P(at|π , a1:t−1, o1:t−1) indexed by θ ∈ �. Then, in the most general
case, a policy search method returns a probability distribution P(π) over 
 representing
the uncertainty over the optimal policy parameters. If the algorithm solves the maximum
expected utility problem, then the support of this distribution will exclusively cover the
set of optimal policies 
∗ ⊂ 
. Otherwise there remains uncertainty over the optimal
policy parameters. However, many policy search methods do not explicitly deal with the
uncertainty over the policy parameters. Some methods only return a point estimate π̂ ∈

. For instance, reinforcement learning algorithms (Sutton and Barto 1998) start from
a randomly initialized point estimate π̂0 of the optimal policy and then generate refined
point estimates π̂1, π̂2, π̂3, . . . in each time step t = 1, 2, 3, . . . using the data provided by
experience. In order to converge to the optimal policy, these algorithms have to deal with
the exploration-exploitation trade-off. This means that the agents cannot just greedily
act according to these point estimates; instead, they have to produce explorative actions
as well, that is, actions that deviate from the current estimate of the optimal policy—for
instance producing optimistic actions based on UCB (Lai and Robbins 1995; Auer et al.
2002).
Crucially, when sampling actions from the predictive distribution, the policy index π is

identical to the index θ that identifies a particular environment with the likelihood model
P(ot|a1:t−1, o1:t−1). By turning the reinforcement learning problem thus into an infer-
ence problem, the exploration-exploitation trade-off becomes a bias-variance trade-off
(Geman et al. 1992) in policy space. This highlights the essence of the exploration-
exploitation trade-off: any action issued by the agent has to respect the uncertainty over
the policy parameter—otherwise they are biased. In particular, if the agent acts determin-
istically and greedily (i.e. it treats the estimate π̂ as if it were the true policy parameter)
then it is overfitting the experience and introducing a bias; likewise, an agent that follows
a stochastic policy introduces variance and will not produce the highest possible reward
compared to the case when the optimal policy is known. An excessively stochastic agent
therefore underfits its experience.
The operational distinction of having policy uncertainty has important algorithmic con-

sequences. When there is policy uncertainty, the belief of the decision-maker is itself a
random variable. This means that the very policy is undefined until the random variable
is resolved. Hence, the computation of the optimal policy can be delayed and determined
dynamically. It is precisely this fact that is (implicitly) exploited in popular reinforce-
ment learning algorithms, and explicitly in the algorithms based on random beliefs. This
is in stark contrast to the case when there is no policy uncertainty, where the policy is
pre-computed and static. Another example where random beliefs play a crucial role
is in games with incomplete information (Osborne and Rubinstein 1999). Here, having
incomplete information about the other player leads to a infinite hierarchy of meta-
reasoning about the other player’s strategy. To avoid this difficulty, Harsanyi introduced
Bayesian games (Harsanyi 1967). In a Bayesian game, incomplete knowledge is modeled
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by randomly instantiating the player’s types, after which they choose their strategies
optimally—thus eliminating the need for recurrent reasoning about the other players’
strategy. Similarly, a Thompson sampling agent randomly instantiates his belief at every
point in time and acts optimally with respect to this belief. An important consequence of
this is that agents have uncertainty about their policy.
Adaptive Coding. The adaptive control problem can also be construed as an adap-

tive coding problem both for actions and observations (Ortega and Braun 2010b, 2012b).
The question then is: How can we construct a system P defined by P(ot|â≤t , o<t) and
P(at|â<t , o<t) such that its behavior is as close as possible to the custom-made system
P(ot|θ , â≤t , o<t) and P(at|θ , â<t , o<t) under any realization of Qθ ? Using the Kullback-
Leibler divergence as a distance measure, we can formulate a variational problem in Pr,
where Pr defines an input-output system trough a distribution over interaction sequences
a1o1a2o2 . . ., such that

P := argmin
Pr

{
lim sup
t→∞

∑
θ

P(θ)

t∑
τ=1

(
Daτ
m (Pr) + Doτ

m (Pr)
)}

with

Dat
θ (Pr) =

∑
â<t ,o<t

P(â<t , o<t|θ)
∑
at

P(at|θ , â<t , o<t) log
P(at|θ , â<t , o<t)

Pr(at|â<t , o<t)

Dot
θ (Pr) =

∑
a≤t ,o<t

P(â≤t , o<t|θ)
∑
ot

P(ot|θ , â≤t , o<t) log
P(ot|θ , â≤t , o<t)

Pr(ot|â≤t , o<t)
.

In the case of observations, this is a well-known variational principle for Bayesian infer-
ence, as it describes a predictor that requires, on average, the least amount of extra bits
to capture informational surprise stemming from the behavior of the environment. In the
case of actions, the same principle can be harnessed to describe resourceful generation of
actions in a way that requires random bits with minimum length on average, when trying
to match the optimal policy most suitable for the unknown environment (MacKay 2003).
When thinking about the adaptive control problem in this way, the aim of the adaptive
agent is simply to avoid surprise. The fact that each custom-built policy P(at|θ , â<t , o<t)

can be thought of as maximizing a utility in environment Qθ is not crucial, as this policy
could also be given by a teacher’s demonstration in the absence of an explicitly stated util-
ity function. The avoidance of surprise of adaptive systems has recently been discussed in
the context of active inference and the free energy principle (Friston 2009, 2010).

Causality

In Section “Causal induction”, we could demonstrate that generalized Thompson sam-
pling can also be applied to the problem of causal induction, by designing policy and
prediction models with different causal structures. This way generalized Thompson sam-
pling can be used as a general method for causal induction that is Bayesian in nature. It is
based on the idea of combining probability trees (Shafer 1996) with interventions (Pearl
2000) for predicting the behavior of a manipulated system with multiple causal hypothe-
ses. Both the interventions and the constraints on the causal hypotheses introduce
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statistical asymmetries that permit the extraction of causal information. Unlike frame-
works that aim to extract causal information from observational data alone (Shimizu et al.
2006; Griffiths and Tenenbaum 2009; Janzing and Schölkopf 2010), the proposed method
is designed for agents that interact with their environment and use these interactions to
discover causal relationships.
To construct the Bayes-causal solution (3), we needed to treat actions as interventions.

This raises the question about why this distinction was not made for deriving classical
expected utility solutions. Since,

P(at|a<t , o<t) =
∑
θ

P(at|θ , a<t , o<t)P(θ |â<t , o<t)

P(ot|a≤t , o<t) =
∑
θ

P(ot|θ , a≤t , o<t)P(θ |â≤t , o<t),

determining the conditions boils down to analyzing when the equalities

P(θ |a<t , o<t) = P(θ |â<t , o<t)

P(θ |â≤t , o<t) = P(θ |a≤t , o<t)

hold. Replacing both sides yields,

P(θ)
∏t

k=1 P(ak|θ , a<k , o<k)P(ok|θ , a≤k , o<k)∑
θ ′ P(θ ′)

∏t
k=1 P(ak|θ ′, a<k , o<k)P(ok|θ ′, a≤k , o<k)

= P(θ)
∏t

k=1 P(ok|θ , a≤k , o<k)∑
θ ′ P(θ ′)

∏t
k=1 P(ok|θ ′, a≤k , o<k)

and we conclude that

P(ak|θ , a<k , o<k) = δāk (ak),

i.e. the actions have to be issued deterministically (but possibly history-dependent) from
a unique policy. Intuitively speaking, this is because the operations of intervening and
conditioning coincide when the random variables are deterministic.

Convergence

There are important cases where random belief approaches can fail. Indeed, it is easy to
devise experiments where having policy uncertainty converges exponentially slower (or
does not converge at all) than the Bayes adaptive optimal policy. Consider, for example,
two k-order Markov chains with only one observable state when applying k times the
same action, but we do not know which action it is. For two possible actions and a uni-
form prior over the two possible environments the distribution over possible worlds stays
uniform as long as no reward has been observed. Choosing actions randomly accord-
ing to this distribution would require 2k actions to accidentally choose a sequence of the
same action of length k. Thus, the Bayes adaptive optimal policy converges in time k,
while the agent with policy uncertainty needs exponentially longer. A simple way to rem-
edy this problem is, of course, to sample random beliefs only every k time steps (Strens
2000). But this problem can be exacerbated in non-stationary environments. Take for
instance, an increasing MDP with two actions and number of states k = ⌈

10
√
t
⌉
, in
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which the optimal policy converges in 100 steps, while an agent with policy uncertainty
would not converge at all in most realizations. Although (Ortega and Braun 2010b) prove
asymptotic convergence for general environments fulfilling a restrictive form of ergod-
icity condition, this condition needs to be weakened for the convergence proof to be
applicable to most real problems. But it is clear that a form of ergodicity is required
for an agent with policy uncertainty to be able to learn to act optimally. Intuitively, this
means that an agent can only learn if the environment has temporally stable statistical
properties.

Conclusion
In this paper we have argued that Thompson sampling is a bounded rational strategy
in decision-making that can be considered optimal under given information processing
constraints. Thompson sampling agents have uncertainty over their policy, which is a
natural phenomenon that arises whenever there are not enough computational resources
to apply the maximum expected utility principle to single out a unique optimal pol-
icy. Having policy uncertainty effectively weakens the two assumptions of the maximum
expected utility principle: the optimal policy can be chosen and refined during inter-
actions, and the computational complexity is lower. We have shown that treating this
uncertainty in a Bayesian way with actions as random variables that obey causal calculus
naturally leads to Thompson sampling and its Bayesian generalization. This generalized
Thompson sampling can be straightforwardly applied to the problem of causal induc-
tion. Maintaining and updating Bayesian probabilities is an optimally efficient way to deal
with uncertainty—be it with respect to the policy or the environment (Ortega and Braun
2010a). As these random-belief approaches can be derived simply from probability theory
and causal calculus we suggest that they cannot only be regarded as heuristic approx-
imations to optimal decision-making, but as principled solution methods in their own
right.

Endnote
aEach custom-built policy P(at|θ , a<t , o<t) can be thought to maximize a utility

function in its environment θ , but this is not essential—the policy could also just be
given by a teacher’s demonstration as in imitation learning (Schaal 1999).
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