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Introduction
Complex adaptive systems (CAS) research area is trying to establish a comprehensive 
and general understanding of the complex world around us (Niazi and Hussain 2013). 
Complex systems typically involve the generation of high dimensional data and rely on 
effective analysis and management of such high-dimensional data. High dimensional 
data exists in a wide variety of real applications, such as text mining, image retrieval, and 
visual object recognition. While the high performance of computers can address some 
of the problems of high dimensional data, for example, the time consuming problem, 
however, the processing of high-dimensional data often suffers from a series of other 
problems, such as the curse of dimensionality and the impact of noise and redundancy. 
Fortunately, it has been shown that the high dimensionality of the data is usually small in 
the intrinsic reduced space.
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In the more or less recent past time, researchers have put forward a lot of efficient data 
dimensionality reduction algorithms (Wang et al. 2014; Zhou and Tao 2013; Nie et al. 
2011; Xu et  al. 2009; Li et  al. 2008). Principal component analysis (PCA) (Belhumeur 
et al. 1997) is a traditional method that projects the high dimensional data onto a low 
dimensional space. Linear discriminant analysis (LDA) (Zuo et al. 2006) is a supervised 
dimensionality reduction method by maximizing the amount of between-class vari-
ance relative to the amount of within-class variance (Nie et al. 2009; Yang et al. 2010). 
Neighborhood component analysis (NCA) (Goldberger et al. 2004) learns a linear trans-
formation by directly maximizing the stochastic variant of the expected leave-one-out 
classification accuracy on the training set. In order to find the intrinsic manifold struc-
ture of data samples, researchers also proposed some nonlinear dimension reduction 
methods, such as the locally linear embedding (LLE) (Roweis and Saul 2000) and the 
Laplacian eigenmap (LE) (Belkin and Niyogi 2003). If there are new data samples in the 
training set, the Laplacian methods need to learn the whole training set again, this is one 
of the disadvantages of these types of algorithms. In order to solve this problem, He et al. 
(2005a) put forward the algorithm of locality preserving projection (LPP), in which the 
linear projection is used to deal with new data samples. Wu et al. (2007) proposed the 
local learning projection (LLP) method to solve this problem. In addition, the neighbor-
hood preserving embedding (NPE) (He et al. 2005b) algorithm was put forward to keep 
the local neighborhood structure on the manifold of the data samples. Some previous 
studies (Zhang et  al. 2009; Tenenbaum et  al. 2000; Yan et  al. 2007) proved that many 
dimensionality reduction algorithms can be expressed as a unified framework.

However, in real applications, most of the methods mentioned above can only pre-
serve the information of the local neighbors, while ignoring the global structure of the 
data. The local structure of the dataset may be easily affected by some factors such as 
noise, illumination or corruption. As a result, the performance of clustering or classifi-
cation tasks will be reduced because of these. Fortunately, some researches have shown 
that the recently proposed low-rank representation (LRR) (Liu et al. 2010, 2013) algo-
rithm has a good robustness for datasets that contain noise or corruption. In the past 
few years, a series of robust classification algorithms based on low-rank representation 
have been put forward. The Robust PCA (RPCA) (Wright et al. 2009; Candès et al. 2011) 
use the low-rank representation to recover the structure of subspaces from the dataset 
corrupted by noise. For subspace segmentation problem, Liu et al. (2010, 2013) use the 
nuclear norm to find the lowest rank representation of a dataset; in this way, the global 
structure of the dataset can be well preserved. Unlike the low-rank representation seek-
ing the lowest rank of the dataset, sparse representation finds the sparest representation 
of a dataset. Zhuang et al. (2012) combine the sparsity and low-rankness together to put 
forward a non-negative low-rank and sparse representation (NNLRS) for dealing with 
the high-dimensional dataset. And then they use the representation coefficient matrix 
to construct the affinity graph for subspace segmentation. Through the combination of 
sparse representation and low-rank representation, the NNLRS method can both cap-
ture the global structure and the local structure of the dataset.

Through the analysis of the above problems, a novel method is proposed in this paper 
by combining the graph embedding and sparse regression method in a joint optimiza-
tion framework. And the supervised learning information is also used in the framework 
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to guide the construction of the affinity graph. In this paper, the construction of the 
affinity and graph embedding are combined to ensure the overall optimal solution. In 
the whole learning process, the label information can be accurately propagated through 
the graph construction. Thus, the linear regression can learn the discriminative projec-
tion to better adapt to the labels of the samples and improve the classification rate of the 
new samples. In order to solve the corresponding optimization problem, this paper pro-
poses an iterative optimization procedure.

In general, the main contributions of this paper are summarized as follows:

1.	 Different from conventional methods, by both using the low-rank representation and 
sparse representation which can preserve the global structure and the local structure 
of the data, the proposed GESR-LR method can learn a novel weight graph.

2.	 By unifying the graph learning, projection learning and label propagation into a joint 
optimization framework, the proposed GESR-LR method can guarantee an overall 
optimum solution.

The remaining of this paper is organized as follows: “Background and related work” 
section briefly reviews the background and some related works. The proposed GESR-LR 
method and the corresponding solution are described in “Combined graph embedding 
and sparse regression with structure low-rank representation” section. Extensive experi-
ments are conducted in “Experiments” section. Finally, we conclude the paper in “Con-
clusion” section.

Background and related work
Since the proposed method in this paper is based on low-rank representation and mani-
fold embedding (Nie et  al. 2014), we briefly review the relevant methods. Given the 
dataset X = [x1, x2, . . . , xu, xu+1, xn] ∈ Rm×n, where the labeled samples are denoted as 
xi|

u
i=1 and the unlabeled samples are denoted as xj|nj=u+1. The label information of the 

labeled samples is denoted as yi ∈ {1, 2, . . . , c}, where the number of the total classes 
is c. The label binary indicator matrix Y are defined as follows: given the training sam-
ple xi(i = 1, . . . , n) and its label vector yi ∈ Rc, if xi is the sample from the kth class 
(k = 1, . . . , c), then the k-th entry of the label vector yi is 1 and for the other entries, the 
value is 0. In this paper, the lr,p-norm is defined as follows: 

Low‑rank representation (LRR)

Given the dataset X ∈ Rm×n which is drawn from a union of subspaces {�i}
c
i=1, where c 

is the dimension of the low-dimensional subspaces, and the dataset is corrupted by noise 
matrix E, the objective function of the LRR method is defined as follows:

�Q�r,p =

(

∑u

i=1

(

∑v

j=1

∣

∣Qij

∣

∣

)p/r
)1/p

.

(1)min
Z,E

rank(Z)+ γ �E�0

s.t. X = AZ + E
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where A is the dictionary for the low-rank representation, E is the error matrix of the 
noise or corruption and γ is the parameter to control the influence of the error matrix. 
Due to the optimization of the rank norm is NP-hard (Nie et al. 2014), in practice, we 
often use the nuclear norm for relaxation. Thus the objective function of the low-rank 
representation is defined as follows:

where �·�∗ represents the nuclear norm which is a relaxation of the rank norm. �·�1 rep-
resents the l1-norm which is a relaxation of the l0-norm for error matrix. If let A = I, we 
can see that the objective function of LRR is equivalent to RPCA while the goal of RPCA 
is to recover an approximate matrix from a corrupted subspace. In real applications, we 
often use the original matrix X as the dictionary. Therefore, the objective of the optimi-
zation problem (2) can be rewritten as:

There are many optimization methods for solving the problem (3). After we get the 
final result of representation coefficient matrix Z, we can use is as a kind of similarity to 
construct an affinity graph (|Z| + |ZT|). Then we use the spectral clustering method on 
the affinity graph to obtain the final clustering result.

Flexible Manifold Embedding (FME)

Given the dataset X, we assume the predicted label matrix is F, then we can have 
F = XTW +  1bT if the label is strict to lie in the space of the give matrix X, in which 
1 ∈ Rn×1 is an all 1 vector. W ∈ Rm×c is the projection matrix. However, as the objective 
function F = XTW + 1bT is a linear format, if the samples is from a nonlinear manifold, 
this may be too strict to fit the samples. Therefore, it is reasonable to add a residual item 
in the regression model of FME (Nie et al. 2010). Then the objective function of FME 
is relaxed to F = XTW + 1bT + F0, where F0 is the residual item between the predicted 
label matrix F and XTW + 1bT. The advantage of this kind of relaxation can make the 
processing of the sample data points on the nonlinear manifolds more flexible. The goal 
of FME is to predict the sample label matrix F and reduce the residual of regression F0 at 
the same time. The objective function of FME is defined as follows:

where the two parameters μ and γ are used to balance the influence of the two terms. 
L ∈ Rn×n is the Laplacian matrix and U ∈ Rn×n is the diagonal matrix. tr(·) represents 

(2)min
Z,E

�Z�∗ + γ �E�1

s.t. X = AZ + E

(3)min
Z,E

�Z�∗ + γ �E�1

s.t. X = XZ + E

(4)

(

F∗,W∗, F
∗
0

)

= arg min
F ,W ,F0

tr(F − Y )TU(F − Y )+ tr
(

FTLF
)

+ µ

(

�W�2 + γ �F0�
2
)
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the trace of a matrix. The first two terms in (4) is used to propagate the labels from the 
labeled samples to unlabeled samples. The last two terms are the regression model. If we 
use the XTW + 1bT − F to replace the regression residual F0, then the objective function 
of FME can be expressed as follows:

Combined graph embedding and sparse regression with structure low‑rank 
representation
In this section, we introduce the details of the proposed method in this paper. The 
objective of GESR-LR is to unify the graph embedding and regression into a unified 
framework. The objective of regression model is to find a projection matrix W ∈ Rm×c 
to match the sample labels F ∈ Rn×c, and use it to classify the new samples. Thus, the 
objective function of the regression model can be defined as follows:

where F0 is the regression residual (Nie et al. 2010).
In the following section, we first introduce the motivation of the proposed method of 

GESR-LR, summarize the objective function of the GESR-LR method and propose the 
optimization solution.

Motivations

For the label propagation problem, we usually have the following hypothesis: a data sam-
ple and its nearest neighbors usually belong to the same class, and the nearest neighbors 
would have a big influence in the determination of the labels of new data samples. In 
short, the labels of similar samples should be close and we can propagate the labels to 
similar samples. Therefore, in the construction of an ideal graph we should consider that 
similar data points and their nearest neighbors should be assigned larger weight values. 
However, the evaluation of similarity of most traditional graph construction methods 
mainly depends on the pair-wise Euclidean distance, while the Euclidean distance is very 
sensitive to noise and any other corruption of the data samples (Zhuang et  al. 2012). 
However, these methods can only capture the local structure of the dataset, but ignore 
to preserve the global structure of the dataset. Fortunately, some recent studies show 
that the LRR method can preserve the global structure of the dataset, and it is robust to 
noise and the corruption of the dataset (Liu et al. 2010, 2013). As a result, these low-rank 
properties can be combined with the graph embedding problem, and thus it can address 
the sensitivity with respect to the local and neighbor properties. So, the main idea of 
constructing an informative graph is to use the low-rankness property to preserve the 
local and the global structure of the dataset with noise. Following the above analysis, 
we put forward a novel method of joint graph embedding and sparse regression with 
structure low-rank representation, named GESR-LR, presented in the next sections in 
this paper.

(5)

(

F∗,W∗, F
∗
0

)

= arg min
F ,W ,F0

tr(F − Y )TU(F − Y )+ tr
(

FTLF
)

+ µ

(

�W�2 + γ

∥

∥

∥XTW + 1bT − F
∥

∥

∥

2
)

(6)F = XTW + F0
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GESR‑LR model

The aim of the proposed GESR-LR method is to design an optimization framework to 
combine graph embedding and sparse regression in order to get a global overall opti-
mum solution. Based on the above analysis of low-rank representation (LRR) and flex-
ible manifold embedding (FME), the objective function of the proposed GESR-LR is 
defined as follows:

where Mij =
∥

∥Xi − Xj

∥

∥

2

2
, U is a diagonal matrix defined as

ς is a large constant such that F∗l and Y∗l (l = 1, 2, . . . , c) can be approximately satisfied, 
and F ∈ Rn×c is the predicted labels of both labeled and unlabeled samples. In the objec-
tive function (7), the aim of the first term is to assess the fitness of labels which means 
that the predicted labels F should be close to the labels of the labeled data samples. The 
second term is the graph embedding and it aims at integrating the regression, graph 
embedding and label propagation for the unlabeled data samples from the labeled data 
samples. For the data point xi, if we get a larger weight Zij, this means that the label F∗j 
has a bigger influence on the prediction of the label F∗i for the data point xi. The third 
item is used to minimize the regression residual. The third and fourth items represent 
the regression model, the goal being to learn the projection for fitting the labels of the 
data samples and classifying new data points. In this method, we adopt the l2,1-norm 
to regularize the projection matrix W, so that it is guaranteed that W is sparse in row 
for feature selection. The last three items adopt the low-rank representation to learn a 
weight graph. The five parameters α, β, λ1, λ2 and γ are used to balance the influence of 
the corresponding five terms. Therefore, the objective function of the proposed GESR-
LR method can be formulated as follows:

where L  =  D  −  S is the Laplacian matrix, and D is a diagonal matrix with 
Dii =

∑

Zi∗+
∑

Z∗i

2 .

(7)

min

n
∑

i=1

Uii(Fil − Yil)
2 +

n
∑

i=1

n
∑

j=1

∥

∥Fi − Fj
∥

∥

2

2
Zij

+ α

∥

∥

∥
XTW − F

∥

∥

∥

2
2 + β�W�21

+ �1�Z�∗ + �2tr(Θ(Z ⊙M))+ γ �E�21

s.t. X = AZ + E, Z ≥ 0

(8)U =

{

ς if xi is tagged
0 otherwise

(9)

min tr
(

(F − Y )TU(F − Y )

)

+ tr(FTLF)

+ α

∥

∥

∥XTW − F
∥

∥

∥

2

2
+ β�W�21

+ �1�Z�∗ + �2tr(Θ(Z ⊙M))+ γ �E�21
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The solution of GESR‑LR

The optimization problem of (9) can be solved by calculating W independently and 
updating F and Z iteratively. In order to solve the optimization problem of (9), we intro-
duce an auxiliary variable S to separate the objective function. We firstly convert the 
problem of (9) to the following equivalent optimization problem:

In order to solve the optimization problem, we first transfer the optimization problem 
to the Lagrange function, and the Lagrange function of problem (10) is as follows:

where ϕ(Z, S,E,Y1,Y2,µ) = µ
2

(

∥

∥

∥X − AZ − E +
Y1
µ

∥

∥

∥

2

F
+

∥

∥

∥Z − S +
Y2
µ

∥

∥

∥

2

F

)

 and �A,B� =

tr(AT
B). Y1 and Y2 are the Lagrange multipliers and μ ≥ 0 is a penalty parameter. For 

solving the optimization problem, we use the LADMAP method. By fixing the other 
variables, the LADMAP updates the variables W, F, Z, S and E alternately, and then it 
updates Y1 and Y2.

1. By fixing F, Z and S, W is solved by the following optimization problem:

(10)

mintr
(

(F − Y )TU(F − Y )

)

+ tr
(

FTLF
)

+ α

∥

∥

∥XTW − F
∥

∥

∥

2

2
+ β�W�21

+ �1�Z�∗ + �2tr(Θ(Z ⊙M))+ γ �E�21

s.t. X = AZ + E, Z = S, S ≥ 0

(11)

L = min

n
∑

i=1

Uii

c
∑

l=1

(Fil − Yil)
2 +

n
∑

i=1

n
∑

j=1

∥

∥Fi − Fj
∥

∥

2

2
Sij + α

∥

∥

∥
XTW − F

∥

∥

∥

2

2
+ β�W�21

+ �1�Z�∗ + �2tr(Θ(S ⊙M))+ γ �E�21

+ �Y1,X − AZ − E� + �Y2,Z − S�

+
µ

2

(

�X − AZ − E�2F + �Z − S�2F

)

= min

n
∑

i=1

Uii

c
∑

l1

(Fil − Yil)
2 +

n
∑

i=1

n
∑

j=1

∥

∥Fi − Fj
∥

∥

2

2
Sij + α

∥

∥

∥XTW − F
∥

∥

∥

2

2
+ β�W�21

+ �1�Z�∗ + �2tr(Θ(S ⊙M))+ γ �E�21

+ �Y1,X − AZ − E� + �Y2,Z − S�

+ ϕ(Z, S,E,Y1,Y2,µ)−
1

2µ

(

�Y1�
2
F + �Y2�

2
F

)

s.t. S ≥ 0

(12)L(W ) = arg min
W

∥

∥

∥XTW − F
∥

∥

∥

2

2
+β�W�21
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By setting the derivative ∂L(W )
∂W = 0, we have the following equation:

where Dii =
1

2�wi�2

Or equivalently

where A = (XXT + βD)−1X .

2. By fixing W, S and Z, F is solved by the following optimization problem:

This is an unconstrained optimization problem. Let W  =  AF and integrate in the 
objective function and find the derivation of the problem (11) with respect to F, by mak-
ing the value of the derivative to zero, and we have

where B = ((XTA − I)T(XTA − I)).
3. By fixing W, S and F, Z is solved by the following optimization problem:

where ∇Zϕ is the partial differential of ϕ with respect to Z, θ = �A�2F , �·�F represents the 
Frobenius norm.

(13)
∂L(W )

∂W
= 2XXTW − 2XF + 2βDW = 0

(14)W =

(

XXT + βD
)−1

XF = AF

(15)L(F) = arg min
F

tr
(

(F − Y )TU(F − Y )

)

+ tr
(

FTLF
)

+ α

∥

∥

∥XTW − F
∥

∥

∥

2

F

(16)
∂L(F)

∂F
= UF −UY + LF + αBF = 0

(17)F = (U + L+ αB)−1UY

(18)

L
(

Zk+1
)

= arg min
Z

�1�Z�∗ + �∇Zϕ(Z, S,E,Y1,Y2,µ),Z − Zk� +
µθ

2
�Z − Zk�

2
F

= arg min
Z

�Z�∗

+
µθ

2

∥

∥

∥

∥

∥

∥

Z − Zk +

[

−XT
(

X − AZK − E +
Y1
µ

)

+

(

Zk − S +
Y2
µ

)]

θ

∥

∥

∥

∥

∥

∥

2

F
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where J is the thresholding operator with respect to the singular value �1
θµ

. A proximal 
optimization method can be used to find the solution of Z.

4. By fixing W, Z and F, S is solved by the following optimization:

Let R = λ2M + V, Vij =
∥

∥Fi − Fj
∥

∥

2

2
. The optimization problem in (20) can be decom-

posed into n independent sub-problems, and each of these sub-problems can be formu-
lated as a weight non-negative sparse coding problem as follows:

where (Sk)ig and (R)ig are the g-th elements of i-th columns of matrices Sk and R. There-
fore, the problem of (21) has a closed form solution (Yang et al. 2013; Zhang et al. 2012).

5. By fixing W, Z, S and F, E is solved by the following optimization problem as follows:

from the above analysis, we can find that, on one hand, the deduction of the variables F, 
Z, S and E are closely dependent. On the other hand, the solution of variable W is only 
related to the variable F. Therefore, we can update the variables F, Z, S and E, iteratively, 
by fixing the other variables fixed. We can calculate the variable W by W = AF after get-
ting the optimal solution of F.

The overall optimization framework for the proposed GESR-LR method is described 
in Algorithm 1.

(19)Zk+1 = J �1
θµ



Zk −

�

−XT
�

X − AZK − E +
Y1
µ

�

+

�

Zk − S +
Y2
µ

��

θ





(20)

L
(

Sk+1
)

= arg min
S

tr
(

FTLF
)

+ �2tr
(

Θ

(

Sk ⊙M
))

+
µ

2

∥

∥

∥

∥

Sk −

(

Z +
Y2

µ

)∥

∥

∥

∥

2

F

(21)min
Si

∑n

g=1

(

Sk
)i

g
⊙ Ri

g +
µ

2

∥

∥

∥

∥

(

Sk
)i

−

(

Zk+1 +
Y2

µ

)∥

∥

∥

∥

2

2

s.t. S ≥ 0

(22)L(E) = arg min
E

γ �E�21 +
µ

2

∥

∥

∥

∥

X − AZ +
Y1

µ
− E

∥

∥

∥

∥

2

F
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Experiments
Human social systems and human facial structure recognition is the emergent outcome 
of adaptation over a period of time (Holland and John 2012). Here, in the experiments 
described in this paper, we have used several datasets to evaluate the performance of the 
proposed GESR-LR method (http://www.cad.zju.edu.cn/home/dengcai/Data/data.html), 
including two human face images datasets (i,e., the ORL and the extended Yale B data-
sets) in addition to an object dataset (COIL-20), a spoken letter recognition dataset (Iso-
let 5) and a handwritten digit dataset (USPS dataset). The datasets contain the common 
images information in daily life, and they are widely used in the areas of image process-
ing, machine learning, etc. The computing platform is matlab R2015B in a PC with CPU 
i7 2600, RAM 16G,

µ

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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Datasets descriptions

1.	 ORL dataset The ORL dataset consists of 400 face images of 40 people. These face 
images are taken under different situations, such as different time, varying lighting, 
facial details (glasses/no glasses) and facial expressions (open/closed eyes, smiling/
not smiling).

2.	 The extended Yale B dataset The extended Yale B dataset contains the face images of 
38 people, each individual has around 64 frontal face images which are taken under 
different illuminations. For computing efficiency, we adjust the size of each image to 
32 × 32 pixels in this experiments.

3.	 COIL-20 dataset The COIL-20 dataset contains the images of 20 objects, each object 
has 72 images and the images are collected from varying every five degrees. For com-
putation efficiency purposes, we adjust the size of each image to 32 × 32 pixels in 
this experiments.

4.	 ISOLET 5 dataset The ISOLET spoken letter recognition dataset consists of 150 sub-
jects, where each person speaks each letter from the alphabet twice. The speakers are 
divided into 5 groups, each group has 30 speakers, and this is marked as ISOLET 5 
dataset. In this work, the ISOLET 5 dataset contains 1559 images, with images from 
26 people, each speaker providing 60 images.

5.	 USPS dataset The USPS dataset is a handwritten digit dataset, which contains two 
parts: the training set with 7291 samples, and the test set with 2007 samples. In this 
experiment, we randomly selected 7000 images of the 10 letters. Thus, there are 700 
images in each category. The size of each images is 16 × 16 pixels.

Classification results

In this section, we evaluate the performance of the proposed GESR-LR method. For the 
semi-supervised problem, we compare the proposed GESR-LR method with the follow-
ing algorithms: FME (Nie et al. 2010), GFHF (Zhu et al. 2003), NNSG, SDA (Cai et al. 
2007), LapRLS/L (Belkin et al. 2006), Transductive component analysis (TCA) (Liu et al. 
2008), and MFA (Yan et  al. 2007). We also use the learned projection matrix to clas-
sify the new samples. The classification method used in our experiments is the near-
est neighbor (NN) classification. For the NNSG and GFHF methods, the classification 
method is as indicated in the corresponding research paper in (Zhou et al. 2004). For 
some embedding algorithms, we first learn the graph Laplacian matrix L while the graph 

weight matrix is defined as Sij = e
−

∥

∥

∥xi−xj

∥

∥

∥

2

σ . The number of the nearest neighbors are cho-
sen from the set of {3, 4, 5, 6, 7, 8, 9, 10}, and the kernel parameters are from the set of 
{10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}. The final dimensions of some algorithms, 
such as FME, LapRLS/L, SDA, TCA and MFA are set to the number of the classes 
and the parameters in these methods are set to the best value according to the related 
research papers. While the parameters of the proposed method GESR-LR (α, β, λ1, λ2 
and γ) are chosen from the range of (10−4, 100). For the sake of computational efficiency, 
all data in these data sets were eventually reduced to 60D vectors.

We performed the experiments on the above datasets: ORL, the extended Yale B, 
COIL-20, Isolet5 and USPS. For every dataset, we randomly selected 50 % samples of 
each subject as the training sample set, while the remaining samples are selected as the 
testing set. For the semi-supervised classification, we select p samples per subject as the 
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labeled data samples, while the remaining formed the unlabeled data samples. The unla-
beled data samples are used to test the performance of semi-supervised classification, 
while the testing sample set is used to test the performance of classifying the new data 
samples with the learned projection matrix.

For the dataset of ORL, COIL-20, Isolet5 and USPS, the number of the labeled data 
sample is set to p = 1, 2 and 3, respectively. For the dataset of the extended Yale B, the 
number of the labeled data samples is set to p = 5, 10 and 15, respectively. In addition to 
the MFA algorithm, where the labeled samples were used for subspace learning, for the 
other algorithms, the training samples are used to learn the projection matrix. We run 
the experiments 30 times on the unlabeled data samples and the test data samples, and 
we obtain the mean classification accuracy and standard deviation (%). In the Tables 1, 2, 
3, 4, 5, the corresponding experiments are referred as Semi and Test respectively. From 
these experimental results, we can get the following conclusions:   

1.	 In terms of classification accuracy, the semi-supervised classification algorithms 
TCA, LapRLS/L, SDA get a higher classification accuracy than the supervised classi-
fication algorithm MFA. This shows that the unlabeled data samples help to improve 
the performance of the semi-supervised classification.

2.	 In some datasets, the GFHF algorithm achieves higher semi-supervised classification 
accuracy than that of TCA, LapRLS/L and SDA algorithms, especially on the data-
sets which have some strong variations. For example, the extended Yale B dataset has 

Table 1  Semi-supervised classification results of different algorithms on the COIL-20 data‑
set

Method P = 1 P = 2 P = 3

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 78.65 ± 2.07 – 81.32 ± 1.77 – 84.56 ± 2.02 –

MFA – – 69.87 ± 2.24 70.10 ± 2.52 76.54 ± 2.28 76.27 ± 2.37

SDA 64.92 ± 2.07 65.80 ± 2.54 72.24 ± 2.19 73.19 ± 2.15 78.89 ± 2.05 78.19 ± 2.66

TCA 71.08 ± 2.23 70.83 ± 2.51 78.17 ± 3.15 77.29 ± 2.18 81.15 ± 2.32 80.96 ± 2.27

LapRLS 69.46 ± 2.58 69.73 ± 2.76 75.21 ± 2.66 75.16 ± 2.31 79.61 ± 2.54 79.85 ± 2.59

FME 76.31 ± 2.09 74.46 ± 2.13 82.35 ± 2.18 79.14 ± 2.39 85.86 ± 1.92 84.70 ± 2.03

NNSG 79.15 ± 2.86 75.31 ± 2.01 83.79 ± 2.69 80.88 ± 2.43 86.62 ± 2.29 82.13 ± 2.24

GESR-LR 81.09 ± 2.33 76.79 ± 2.18 85.29 ± 2.62 81.07 ± 2.59 87.12 ± 2.15 83.32 ± 2.16

Table 2  Semi-supervised classification results of different algorithms on the USPS dataset

Method P = 1 P = 2 P = 3

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 72.39 ± 3.60 – 79.66 ± 3.67 – 83.39 ± 3.07 –

MFA – – 68.74 ± 3.82 66.52 ± 4.23 72.76 ± 4.21 70.57 ± 3.19

SDA 56.86 ± 3.11 54.91 ± 3.92 67.37 ± 3.26 67.43 ± 2.91 72.66 ± 2.64 69.32 ± 3.20

TCA 70.39 ± 3.38 65.36 ± 3.17 76.52 ± 3.21 71.27 ± 3.28 79.58 ± 3.37 72.76 ± 2.94

LapRLS 57.89 ± 4.08 58.42 ± 4.36 69.03 ± 3.86 69.39 ± 2.49 76.02 ± 3.28 74.08 ± 2.79

FME 74.75 ± 6.52 67.91 ± 5.04 79.64 ± 3.41 73.26 ± 3.19 82.15 ± 2.26 74.97 ± 2.72

NNSG 76.98 ± 3.80 68.92 ± 3.37 81.17 ± 2.59 76.85 ± 2.57 84.50 ± 2.13 76.38 ± 2.54

GESR-LR 78.49 ± 3.65 69.56 ± 3.18 83.61 ± 2.36 77.28 ± 2.29 86.07 ± 2.73 78.20 ± 2.17
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strong illumination changes and expression. In this case, the label propagation may 
not perform well. This phenomenon is more obvious on the extended Yale B dataset.

3.	 On the unlabeled dataset, the performance of the proposed GESR-LR algorithm is 
obviously better than the compared methods. This indicates that the structure of the 
graph obtained by the GESR-LR method has more discriminant information, which 
is more effective for the label propagation. This also suggests that simultaneously 
performing label propagation and graph learning is necessary and effective.

Table 3  Semi-supervised classification results of  different algorithms on  the ISOLET5 
dataset

Method P = 1 P = 2 P = 3

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 49.29 ± 2.15 – 56.26 ± 2.44 – 61.13 ± 2.14 –

MFA – – 61.19 ± 2.14 61.46 ± 2.89 65.52 ± 2.27 65.19 ± 2.36

SDA 52.01 ± 2.38 51.19 ± 2.54 61.31 ± 2.28 61.57 ± 2.35 67.55 ± 2.28 67.91 ± 2.06

TCA 49.19 ± 2.94 49.30 ± 2.13 59.77 ± 2.36 59.16 ± 2.42 64.72 ± 2.37 65.01 ± 2.38

LapRLS 51.71 ± 3.03 50.98 ± 2.84 61.63 ± 2.37 61.85 ± 2.21 65.19 ± 1.89 65.25 ± 2.05

FME 49.92 ± 2.40 50.17 ± 2.49 59.92 ± 2.45 59.88 ± 2.56 65.98 ± 1.64 66.13 ± 2.29

NNSG 53.39 ± 2.26 51.75 ± 2.37 62.84 ± 2.57 62.63 ± 2.26 67.33 ± 2.21 67.94 ± 2.15

GESR-LR 55.01 ± 2.25 52.26 ± 2.82 63.09 ± 2.12 63.13 ± 2.43 69.26 ± 2.24 70.03 ± 1.78

Table 4  Semi-supervised classification results of different algorithms on the ORL dataset

Method P = 1 P = 2 P = 3

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 52.81 ± 4.31 – 63.26 ± 3.78 – 68.97 ± 3.54 –

MFA – – 78.22 ± 4.25 79.11 ± 3.76 85.40 ± 3.89 84.78 ± 2.54

SDA 65.29 ± 2.72 65.32 ± 2.83 75.84 ± 3.61 76.92 ± 3.25 82.44 ± 2.54 82.95 ± 2.26

TCA 64.75 ± 2.05 64.61 ± 2.29 77.02 ± 3.15 78.80 ± 2.57 84.49 ± 3.12 84.27 ± 2.67

LapRLS 61.49 ± 3.31 59.88 ± 3.10 78.29 ± 2.54 77.86 ± 2.71 85.83 ± 2.75 85.94 ± 2.39

FME 68.25 ± 2.58 66.69 ± 3.24 80.80 ± 3.25 80.73 ± 2.76 85.92 ± 3.67 84.35 ± 2.64

NNSG 71.86 ± 3.29 67.77 ± 3.73 82.57 ± 2.65 82.91 ± 2.15 86.38 ± 3.83 85.52 ± 2.97

GESR-LR 73.08 ± 3.17 69.29 ± 3.68 85.52 ± 2.14 85.64 ± 2.89 87.45 ± 3.54 86.12 ± 2.99

Table 5  Semi-supervised classification results of  different algorithms on  the extended 
Yale B dataset

Method P = 5 P = 10 P = 15

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 27.49 ± 1.27 – 34.76 ± 2.11 – 40.13 ± 2.02 –

MFA – – 69.52 ± 3.19 70.08 ± 3.26 73.90 ± 2.72 74.15 ± 3.42

SDA 51.92 ± 2.36 52.06 ± 1.58 66.76 ± 1.65 67.49 ± 1.41 73.40 ± 1.19 73.08 ± 1.78

TCA 51.47 ± 2.19 52.56 ± 2.34 65.94 ± 1.95 66.76 ± 2.25 74.38 ± 1.76 74.28 ± 2.37

LapRLS 60.16 ± 2.24 59.47 ± 1.83 74.85 ± 1.67 74.19 ± 1.47 78.64 ± 2.54 78.08 ± 2.67

FME 63.46 ± 2.14 63.75 ± 1.89 76.92 ± 2.38 74.37 ± 1.22 80.38 ± 1.77 78.19 ± 2.03

NNSG 72.37 ± 2.25 66.92 ± 1.64 82.25 ± 1.64 75.42 ± 1.27 83.38 ± 1.93 79.06 ± 1.25

GESR-LR 75.26 ± 2.59 68.13 ± 1.54 84.11 ± 1.57 76.61 ± 1.95 85.87 ± 1.69 80.52 ± 1.28
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The GESR-LR method requires five parameters (α, β, λ1, λ2 and γ) to be set in advance. 
Figure 1 shows the classification accuracy versus the variations of the five parameters, 
respectively, on the extended Yale B dataset. 50 % of samples per subject were randomly 
selected as training samples and remaining samples were used as test samples. We report 
the mean recognition accuracy over 20 random splits. Obviously, it can be found that 
when the parameters vary in a relatively large ranges, the performance of the proposed 
GESR-LR method is more stable. 

Next, we consider the effectiveness of the algorithm when different dimension sizes 
are used. The experiment is conduct on the extended Yale B dataset. We also report the 
mean recognition accuracy over 20 random splits. We can see from the Fig. 2, when use 
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Fig. 1  Classification accuracy versus parameters on the extended Yale B dataset



Page 15 of 17You et al. Complex Adapt Syst Model  (2016) 4:22 

larger dimensions of the feature, the accuracy increase, while when the number of fea-
tures is over 60, the accuracy increases slowly and it is much stable.

Conclusion
Complex adaptive systems (CAS) involve the processing of large amounts of high dimen-
sional data. It is thus paramount to develop and employ effective machine learning tech-
niques to deal with such high dimensional and large datasets generated from the CAS 
area. In this paper, we proposed a novel semi-supervised learning method termed as 
graph embedding and sparse regression with structure low rank representation (GESR-
LR), by combing graph embedding and sparse regression, which are performed simul-
taneously in order to get an optimal solution. Different from some traditional methods, 
the proposed GESR-LR method takes into account both the local and global structure 
of the dataset to construct an informative graph. Extensive experiments on five datasets 
demonstrate that the GESR-LR method outperform the state-of-the-art methods. In our 
future work, we will extend the ideas presented in this paper and will apply the proposed 
GESR-LR method to other challenging problems.
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