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Background
Multi-robot system (MRS) has emerged as a product of cheap sensing and actuating 
capabilities of small, and moderately sophisticated robots and advancements in dis-
tributed problem-solving. In application domains such as sweeping, distribution and 
exploration of an unknown environment, MRS usually have mobile and autonomous 
participating robots, performing the task cooperatively.

It has been reported that exploration and coverage is a fundamental problem in MRS 
González-Banos and Latombe (2002). In the coverage problem, the robots cooperatively 
sweep the unknown environment, possibly searching for a goal (Lidoris et  al. 2009). 
Hence, these two terms are related with each other and can be used interchangeably. In 
Cepeda et al. (2012), authors have defined the main goal of robotic exploration, relating 
exploration and coverage with each other, as minimizing “the overall time for covering 
an unknown environment”.

The most acceptable mechanism of distributed exploration in an unknown environ-
ment is based on a greedy approach Yamauchi (1998), in which a frontier draws the 
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boundary between known and unknown space, and a next-best-view (González-Banos 
and Latombe 2002) is chosen across the frontier. It is evident that the real problem in 
exploration is the efficient distribution of the frontier areas to a pool of robots. There 
are different perspectives that can be used to address this problem, including economy-
based negotiations (Sheng et  al. 2006), cost-benefit analysis (Burgard et  al. 2005), and 
environment-driven considerations (such as spatial features and capabilities of robots) 
Stachniss et al. (2008), Rooker and Birk (2007).

However, such concise algorithmic approaches are not suitable for unstructured and 
dynamic environments (Cepeda et  al. 2012), such as cities. The city-scale multi-robot 
coverage have many potential applications, such as sweeping (garbage-collection, mine 
sweeping, pesticide and water spray etc.), searching (rescue operations, ammunition 
and drug search etc.), and data gathering (futuristic Internet of Things applications and 
transportation etc.).

In this article, we consider the problem of large scale coverage of unknown environ-
ments using MRS, where simple robots are modeled as the agents in a multi-agent 
system (MAS) Macal and North (2005). Using MAS, we use a bottom-up approach, in 
which local behavior (without global knowledge, optimum plan and permanent storage) 
of agents converges into global exploration.

The motivation of our mechanism is from Cepeda et al. (2012), in which, a behavior 
based strategy of multi-robot exploration is presented. The authors have introduced four 
behaviors, named as “exploration”, “dispersion”, “obstacle avoidance”, and “avoiding past”. 
The mechanism relies on locating an open area along the frontier during exploration 
phase. The robots have limited memory so that they can just remember recently visited 
areas, and avoid them during exploration. The obstacle avoidance is achieved through 
sensing the obstacles within a range, and collision avoidance is achieved through simple 
mechanism of dispersion. The mechanism was simulated for a regular space of 200 m2.

In the mechanism presented in this paper, we have generalized the robot’s behavior 
[presented in Cepeda et  al. (2012)] into an agent’s behavior, and extended the model 
in such a way that it has more explicit representation of space and sensed parameters. 
Hence, our model can be used with any of the agent modeling simulator which has a 
space representation in cellular automata. Additionally, our model requires much sim-
pler sensing requirements.

However, the main contribution of our work is simulation of the model at a very large 
scale. The simulation is based on real GIS map of a city spanned across several kilom-
eters of space and synchronous update scheme has been used. We have also set up two 
deployment scenarios of the agents [(i) a bunch of agents deployed at the center of the 
city, and (ii) agents individually dispersed at four corners of the city] for evaluation of 
the exploration efficiency, comparatively. Due to the stark contrast between the number 
of the agents and the size of the space, we also evaluate the potential of agent-to-agent 
interaction towards the improvement in exploration efficiency. Hence, no explicit com-
munication is required, example of explicit communication is to share history, which can 
be useful in small environments. For large environments, it cannot be useful because 
agents refresh their memory after certain time due to limited memory available onboard. 
On other hand robots are equipped with local sensors, which are used to detection other 
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robots in its communication zone. Mean position is computed using the information of 
robots in the neighborhood coming from the local sensors.

This paper is structured as follows: first, related work is detailed in "Related work" sec-
tion; followed by the model in "Model" section; "Simulation and results" section focus on 
simulations and results; and finally, we conclude the paper in "Conclusions and outlook" 
section, including an outlook.

Related work
An extensive survey of exploration and coverage approaches using a multi-robotic sys-
tem has been presented in Julia et al. (2012) and Galceran and Carreras (2013).

Several researchers have investigated potential field approach for decentralized multi-
robotic control and coverage (Baxter et al. 2007). In the potential field approach, robots 
feels force of attraction for the goal (e.g. frontier), and repulsion for other robots and the 
obstacles. Main limitation of this technique is the presence of the local minima, which 
may restrain robots from exploring the environment completely. This problem was 
resolved in Renzaglia and Martinelli (2010), by introducing a leader in the team with 
different control law, i.e. frontier based exploration, while the followers are potential-
field driven. Similarly, in Zheng et  al. (2010), the authors have proposed Space-Based 
Potential Field technique, which focus on dispersion of robots in the environment, while 
avoiding overlap performance and the local minima. Recently decentralized variation of 
this technique (Liu and Lyons 2015) is proposed, which includes monotonic factor for 
coverage to avoid local minima problem.

Other techniques include physics based coverage mechanism, which exploits the 
kinetic energy for the coverage task. In Spears et al. (2006), authors have proposed phys-
ics based coverage algorithm to control multi-robots for exploration. It requires limited 
communication, sensing and global knowledge. This algorithm is inspired by the motion 
of gas particles, which is effective to cover the unstructured environments. This work 
was extended by Maxim and Spears (2010) which presented physics based uniform cov-
erage algorithm for the environments that contain non-convex regions.

Many of the multi-robot coverage algorithms are inspired by nature. Various nature-
tested mechanisms, which are proven to be successful in biological systems, have been 
effective for robotics as well. In Florea et al. (2015), the authors took inspiration from ants 
and presented ant-foraging based approach, in which the ants leave pheromone-like scent 
marker in the environment for coordination in coverage process. Other bio-mimetic 
approach includes the swarm based coverage techniques (Kantaros et al. 2015). Swarm 
is also used with behavior-based social interactions (Şahin 2005). In Cepeda et al. (2012), 
a behavior based technique for multi-robot coverage is presented. A set of simple behav-
iors are defined for exploration, therefore, no explicit target location is required. Rather a 
local spatial information memory is combined with the finite state automata to ensure the 
dispersion of the robots over the environment. Major issue in this approach is the com-
munication and synchronization during exploration to avoid already visited cells and to 
choose an appropriate direction. In Vizzari et al. (2013), dispersion behavior of a group 
is presented, which preserves cohesion in group of pedestrians instead of area coverage.

One of the first multi-robotic exploration technique was developed (Rekleitis et  al. 
1997, 1998) using rule- and heuristic-based approach. Simple robots with limited 
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computation, memory and communication were used to cover unknown terrain col-
laboratively. Robots were divided into two teams; the first team explored the area, while 
the second team provided relative measurements, hence acting like a landmark. Appar-
ently, this technique was not truly autonomous and distributed and required quite a lot 
of resources and time. Another team based approach was proposed in Cohen (1996), 
in which collaborating teams built a map of an arena using probabilistic techniques 
in semi-distributed fashion Simmons et  al. (2000). In Batalin and Sukhatme (2002), a 
simple heuristic-based coverage algorithm was proposed to disperse the robots in the 
environment. But for effective navigation of the robots and coordination, efficient locali-
zation and mapping techniques were required.

Another probabilistic, but centralized approach for coverage was introduced in Bur-
gard et al. (2005) that assigned goals to the robots based on their localization and the 
closet frontier cell. It probabilistically tried to balance the travel cost to the unexplored 
area and the utility gained. Frontier-based coverage algorithm was originally presented 
in Yamauchi (1998), where grid maps were built from the sensor input and the algorithm 
computed the frontier between the robot location and the unexplored cells. This work 
was extended to a more generalized and distributed mechanism of building a global map 
(Birk and Carpin 2006), in which the robots moved to the nearest frontier cell, while 
avoid visiting the frontier cells traversed by other robots. A more generalized cell-based 
research flourished as grid-based coverage techniques, in which environment was 
divided into a set of uniform grid cells. In such an environment, a Multi-Robot Spanning 
Tree Coverage approach was introduced in off-line (Hazon and Kaminka 2008) as well 
as on-line (Hazon et al. 2006) mode. In Zheng et al. (2005), the authors built a variation 
of this method called multi-robot forest coverage, in which the grid cells were kept large 
and these cell were further divided into sub-cells.

In this article, we consider the problem of large scale coverage of unknown environments 
using multi-robotic system. There are very few research efforts in this domain. For exam-
ple, the Robocop urban search and rescue (USAR) aims to promote research in collabora-
tive problem solving by multiple robots in a city scale arenas (Visser et al. 2015). However, 
the emphasis of this competition is on cooperative mapping, search and rescue, disaster 
management, coordination etc., rather than coverage and exploration. Hence, the notion of 
application overrides the notion of coverage. We have opted a entirely opposite approach, in 
which coverage is the primary function, keeping in view the possible applications of it.

The city-scale multi-robot coverage have many potential applications, but they share 
the same operational characteristics:

• • The robots use autonomous and decentralized approach and have the same role (no 
concepts of diversified teams).

• • The robots main activity is mobility, requiring much resources, hence depleting 
resources for storage and processing. Hence, we cannot utilize (unlimited) occu-
pancy-based and stored maps, or even potential maps.

• • The robots are not many when compared with the size of the world. Hence, explicit 
communication is ignored and local sensors are used to detect other robots in the 
communication zone.
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These characteristics are the building blocks of the mechanism presented in this paper.

Model
As shown in Fig.  1, the decision-making process consists of four behaviors; Disperse, 
Explore, Avoid Obstacle and Avoid Past; all destined to change the direction of motion 
of the agent, possibly providing a New Heading to be used in the next Move. Each agent, 
in each iteration, starts with the dispersion phase, followed by the exploration phase. If 
the agent is in an area where avoiding an obstacle is required, then avoiding the obstacle 
is behaviorally prioritized over coverage extension, i.e. motive of avoiding recent past 
before the actual move. After the move, the history constituted by the most recently vis-
ited cells is updated.

Dispersion

Algorithm 1 Disperse
1: if Should Avoid Obstacle? then
2: Do nothing
3: else
4: neighbors ← agentset in radius equal to comfort-zone
5: if count(neighbors) == 0 then
6: Do nothing
7: else
8: meanPosition ← mean position of neighbors
9: if distance to meanPosition < dead-zone then
10: Apply Fixed Translation
11: else
12: angleTo ← angle towards meanPosition
13: if angleTo < 30 then
14: newHeading ← heading + deviation {deviation is +45 or −45}
15: heading ← Set Direction (newHeading)
16: end if
17: end if
18: end if
19: end if

The algorithm of dispersion behavior is given in Algorithm 1. If the agent is in an area 
where avoiding an obstacle is required, then avoiding the obstacle, gets priority (in fact, 

Fig. 1  Agent behavioral flow: performed at each time-stamp of discrete time simulation
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leaving it for its turn) over dispersion. The dispersion behavior depends on neighbors 
of the agent in its COMFORT-ZONE (settable global variable). If there is no agent in 
this zone, there is no need to disperse. Otherwise, the dispersion depends on meanPosi-
tion of the neighbors. If the meanPosition is too close (within a settable DEAD-ZONE), 
a fixed translation is applied. If fixed translation is not required, the angle towards the 
meanPosition is calculated. This angle should not be too less (<30° where 0 represents 
no difference in current heading and angle towards the meanPosition of neighbors). But 
at the same time, it should not be too much (>45°). This assures that neither the agent 
bumps into the bunch of neighbors, nor, the agent acquires an entirely different direc-
tion from its original direction of motion as a result of dispersion.

The Set Direction procedure sets the ranging of a calculated intended angle keeping 
it within allowable limits of 0° to 359°. The Apply Fixed Translation inverts the heading, 
moves the agent x time speed, thus placing it at probably a vacant location, updating the 
History, and, inverting the direction again, so that it keeps moving in the same direction, 
after being sufficiently dispersed.

A procedure Detect Corners acts as the basis of procedure Should Avoid Obstacle and 
Avoid Obstacle behavior. For each of the possible orientations; (i) front (relative angle 
equal to 0 between current heading and the obstacle), (ii) left (relative angle equal to 
45 between current heading and the obstacle on the left), and (iii) right (relative angle 
equal to 45 between current heading and the obstacle on the right); a table is populated 
indicating the obstacle’s direction and distance. Starting from a distance equal to 1 up 
to settable CORNER-DISTANCE, an obstacle is identified as soon as it is detected. For 
example, the table may have an entry, “front, 3”, which represents that there an obstacle 
at front and at a distance 3. The table may have another entry for left, and no entry for 
right.

The Should Avoid Obstacle procedure just transforms state of the table returned by 
the procedure Detect Corners into a boolean value; true, if length of the table is greater 
than 0, false, otherwise.
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Exploration

Algorithm 2 Explore (Locate Free Space)
1: ArrayObstacles [5]
2: i ← 1
3: while i < INTENDED-DISTANCE do
4:
5: if orientation 45 i is not walkable then
6:
7: if ArrayObstacles [x] >=MAX then
8: ArrayObstacles [x] = i
9: end if
10: end if
11:
12: if patch-right-and-ahead 45 i is not walkable then
13:
14: if ArrayObstacles [y] >=MAX then
15: ArrayObstacles [1] = i
16: end if
17: end if
18:
19: if patch-left-and-ahead 90 i is not walkable then
20:
21: if ArrayObstacles [y] >=MAX then
22: ArrayObstacles [y] = i
23: end if
24: end if
25:
26: if patch-right-and-ahead 90 i is not walkable then
27:
28: if ArrayObstacles [3] >=MAX then
29: ArrayObstacles [3] = i
30: end if
31: end if
32:
33: if patch-ahead i is not walkable then
34:
35: if ArrayObstacles [4] >=MAX then
36: ArrayObstacles [4] = i
37: end if
38: end if
39: end while
40: i ← index of maximum value of ArrayObstacles
41: if i = 0 then
42: heading ← Set Direction (heading − 45)
43: end if
44: if i = 1 then
45: heading ← Set Direction (heading + 45)
46: end if
47: if i = 2 then
48: heading ← Set Direction (heading − 90)
49: end if
50: if i = 3 then
51: heading ← Set Direction (heading + 90)
52: end if
53: if i = 4 then
54: heading ← Set Direction (heading + 0)
55: end if

Exploration is not performed in each iteration; instead after expiry of WANDERING-
LIMIT. Each agent locates free space compatible to its orientation as shown in Algorithm 2. 
Five orientations are explored relative to current heading of the agent; which are, 45° to the 
left and right, 90° to the left and right, and 0° (i.e. same as current heading). The array Array-
Obstacles stores the minimum walkable distance before an obstacle is encountered in these 
five directions. The array is initialized with a value sufficiently large at each index.

The array is populated with distance in a specific direction starting from i equal to 
1 to a settable variable INTENDED-DISTANCE. As soon as an obstacle is found, the 
array element against that direction is updated with the distance, indicated by while loop 
index. Let i represents the index of the array against which the maximum number is 
stored (it can be at the most the initialization value that was never updated, indicating 
a free space in that direction without any obstacle within INTENDED-DISTANCE), the 
heading of the agent is updated corresponding to that direction.
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Obstacle avoidance

The detectCorner procedure returns a table indicating the obstacles’ distances at “front”, 
“right” and “left”. If the table is empty, there is no obstacle to avoid. Otherwise, the head-
ing of the agent is inverted in case of obstacle at front. If there is no obstacle at front, 
but there is an obstacle towards left or right, the heading changes diagonally accord-
ingly, where left have preference over right (with no particular reason). The algorithm of 
obstacle avoisance is given in Algorithm 3.

Algorithm 3 Avoid Obstacle
1: corners ← detectCorner()
2: if length of table corners > 0 then
3: if table corners have key = front then
4: heading ← Set Direction (heading + 180)
5: else
6: if table corners have key = left then
7: heading ← Set Direction (heading + 45)
8: else
9: if table corners have key = right then
10: heading ← Set Direction (heading − 45)
11: end if
12: end if
13: end if
14: end if

Avoid past

The algorithm of avoiding past is given in Algorithm 4. The procedure uses a counter 
freeSlot to keep track of number of cells in the History table. After reaching to a maxi-
mum value equal to HISTORY-PERIOD, the counter is reset to zero. After each move, 
freeSlot is incremented and visited cell is stored in HISTORY-PERIOD against the index 
equal to freeSlot. So, practically this procedure executes after multiple of freeSlot’s max-
imum value, to avoid frequent changes in agent’s orientation. If the procedure is exe-
cuted, the following is the mechanism which is followed, given that procedures used are 
obvious and easily understood by their names. If the patch-ahead (Netlogo routine) is 
notOccupied and notInHistory, then there is no need to change the heading. Else, if, the 
patch on the left and at the diagonal angle, is notOccupied and notInHistory, the heading 
is changed towards that patch. Else, if, the patch on the right and at the diagonal angle, 
is notOccupied and notInHistory, the heading is changed towards that patch. If all three 
directions are occupied, the heading of the agent is orthogonally inverted.

Algorithm 4 Avoid Past
1: if freeSlot < HISTORY − PERIOD then
2: Do Nothing
3: else
4: if notInHistory (patch-ahead speed) and notOccupied (patch-ahead speed) then
5: Do nothing
6: else
7: if notInHistory (patch-left-and-ahead 45 speed) and notOccupied (patch-left-and-ahead 45 speed) then
8: heading ← heading - 45
9: else
10: if notInHistory (patch-right-and-ahead 45 speed) and notOccupied (patch-right-and-ahead 45 speed)

then
11: heading ← heading + 45
12: else
13: heading ← Set Direction (heading + 180)
14: end if
15: end if
16: end if
17: end if
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Behavior selection

The behavior selection is a mechanism for coordination of behaviors and it decides 
which behavior will get control in a given situation. The behavior selection is achieved 
for autonomous exploration using finite state automata (FSA) shown in Fig.  1. Initial 
state is dispersion which ensures if robots in a very near (in a DEAD ZONE) then it 
disperses them, if obstacle is detected during this behavior, avoid obstacle behavior is 
activated to ensure safe navigation of robot during dispersion. If there is no robot in a 
dead zone then explore behavior is triggered which locate largest free space available for 
navigation. During this behavior to avoid revisits of same location avoid past behavior is 
triggered. Simulation terminated after specific time stamps.

Simulation and results
The simulation was performed in agent modeling tool NetLogo (Seth and Wilensky 
2004). Shape files (representing points, lines and polygons) of the center of a Central 
European city were used to generate the simulated World, using the GIS support pro-
vided in Netlogo. For simplicity, various structural features of the city such as buildings, 
open-spaces and greenery were categorized as places where one cannot walk. Only path-
ways, streets and roads were considered walking-friendly. Thus, each patch (cell) of the 
Netlogo World stored this information in a boolean variable “walkable?”. The patch size 
is equal to 2/3 × 2/3 m2, and there are 220,452 walkable patches and 609,609 patches are 
not walkable.

Three scenarios were simulated:

1.	 Single: single agent starting at the center of the city.
2.	 FourCen: four agents staring at the center of the city.
3.	 FourDis: four agents distributed across four corners of the city.

For each scenario, the discrete-time simulation was run for 12 h; a logical time in which 
each simulation step represent a single second. In each time-stamp, an agent performs a 
process represented in Fig. 1.

Figure 2 presents a snapshot of the simulation after 500 iterations (around 8 min). The 
highlighted section of larger map (at top) is updated below with extend of explored space 
(in black color) in case of Single (left), FourCen (middle) and FourDis (right) scenario. 
A more quantitative analysis is presented in Fig. 3. It is evident from the graph that the 
case FourDis outperforms other two cases. The coverage is around 40% in FourDis case 
and around 36% in FourCen case. However, this does not represent the actual picture. 
Due to vastness of the space, many cells remain uncovered even though an agent has 
traversed through the street in which they lie, due to designation of only those cells as 
covered who are within a specified range. If a street having traversed is the criteria of 
coverage, then the coverage percentage is much higher, as evident from Fig. 4.

Another aspect that we explored that what is the percentage of cells which are discov-
ered more than once. A quantitative analysis is presented in Fig. 5. A re-discovery rate 
reaching up to 20% is not a good outcome, but it is inevitable in a memory-less mecha-
nism that we have.
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Fig. 2  The part of the city map simulated (above). Below Explored space after 500 iterations, single (left), 
FourCen (middle), and FourDis (right)

Fig. 3  Comparison of 3 scenarios—covered space

Fig. 4  Explored space after 12 h (end of simulation), Single (left), FourCen (middle), and FourDis (right)
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Finally, we also analyzed the number of times two agents came close to each other, to 
judge the potential of information sharing. It was just 78 time (just above 1 min) during 
simulation of 12 h. Even during such sparse encounters, 80% of time the agents did not 
change their direction drastically, even when the dispersion was applied.

Conclusions and outlook
In this article, the proposed solution for multi-robots coverage problem is analyzed 
based on the results obtained through extensive simulations. The advantage of simulat-
ing the model at the scale of a city is that, we do not need explicit evaluation for differ-
ent environmental features, such as large open spaces, narrow cluttered environments, 
dead-end corridors, and rooms in a building. A city have all these environmental fea-
tures embedded within itself. The solution comprising of four sub-behaviors namely, 
dispersion, exploration, obstacle avoidance and past avoidance, and produces significant 
efficiency for an agent with such a simple function.

The behavior of the agent can easily be mapped on to real life robots for practical 
applications. For dispersion and exploration behaviors, robots are required to be able 
to move from one position to another, which is a basic characteristic implemented in 
almost all robots and, therefore, does not present any special design/implementation 
challenge. For obstacle avoidance, a robot shall be capable of detecting obstacles from a 
safe distance as well as capable of deciding new course of direction. The former charac-
teristic can be achieved through laser and/or sonar sensors that allow to the determine 
distances from obstacle based on the transmitted and received waves from a sensor. 
Once the distance to an obstacle is determined an intelligent controller (typically in the 
form a micro-controller or a micro-processor) could be used to decide new direction for 
exploration. As each robot would be equipped with an intelligent controller and memory 

Fig. 5  Comparison of 3 scenarios—re-discovered space
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module, avoiding past could be implemented by keep track of each visited cell in the 
memory.

A robot with above mentioned characteristic could be either designed/implemented 
from the scratch so as to customize the other requirements such as robustness, cost, etc. 
for a given practical application or commercially available robots for scientific research 
and practical applications purposes could be purchased for validating the simulation 
results and for deployment of robots for an target application, respectively. One limita-
tion of this study is simulations instead of real robots but the experiments in the physical 
environments are complex and difficult to scale for large scale arenas using real robots; 
secondly such experiments are not possible with limited finance.
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