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Introduction
We live in a time where electronic gadgets and integrated sensors are all around us—
from versatile Smartphones and tablets to portable PCs, and from indoor temperature 
regulators to microwave ovens.  We live in a new world—a world of smart*—where intel-
ligence and connectivity is added to every conceivable object. The vision of the internet 
of things (IoT) by Ashton (2009) appears to have manifested itself—albeit in unexpected 
ways. This emergence of the IoT in our everyday lives obviously has numerous implica-
tions resulting in a very different environment and society.

Considering that the IoT concept is itself quite new, it is understandable that it is dif-
ficult to model. Researchers from the communication systems area often focus primarily 
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on the communication aspects of the IoT and assume that this is essentially the whole 
thing. That approach however, is problematic—to say the very least. Firstly,  consider-
ing only the communication aspect of the devices—with little regards to the fact that 
they are part of our everyday lives—is obviously incorrect. Secondly, while this would 
have been fine when the technologies were at the stage of proof-of-concept, this is not 
enough at the current stage when they have even reached commercial proliferation. 
Additionally, a key problem in modeling the IoT using existing methodologies and tools 
is that the number of devices in the real world far outnumbers the one used as a proof-
of-concept in research papers using traditional simulation tools.

With IoT structures growing at such a fast rate, existing simulation tools such as NS2/3 
and others are often unsuitable to effectively model and simulate such systems (Niazi 2008). 
Agent-based modeling and complex networks (Gershenson and Niazi 2013) can however 
be considered to model such infrastructures—such as proposed by us previously in cogni-
tive agent-based computing framework (Niazi and Hussain 2013). This framework offers 
tools and techniques to effectively model different types of complex adaptive systems as 
well as complex physical systems such as the IoT (Niazi and Hussain 2009).

Previously, to the best of our knowledge, no work has been presented which combines 
different modeling paradigms from the perspective of complex systems modeling dem-
onstrating how these paradigms may be used to effectively model complex communica-
tion networks, in general, and the IoT, in particular.

The novelty of the current paper lies in the usage of agent-based modeling in conjunc-
tion with complex networks as part of the cognitive agent-based computing framework—
essentially advancing our previous work presented in Laghari and Niazi (2016). The idea 
is further  demonstrated by means of a specific case study modeling complex network 
topologies for the calculation of power consumption in devices as part of the IoT.

To demonstrate the application of the cognitive agent-based computing framework, 
we have chosen a particular problem related to estimation of power consumption in net-
worked sensing devices. For numerous reasons, gadgets can tend to act like “invisible” 
power scattering sources. Persistent power utilization additionally brings about higher air-
conditioning bills. The resultant impact on the planet is alarming. This is actually a phe-
nomenon resulting from application of the basic laws of thermodynamics (Dincer 2000).

The key contributions of the current paper are summarized as follows:
We propose a methodology for modeling complex scenarios in the IoT domain using a 

combination of complex networks and agent-based modeling used in conjunction with 
each other. We would like to also note our previous introductory work in the domain 
published in conference proceedings such as (Batool and Niazi 2015; Batool et al. 2014). 
The current work, however, is both considerably more extensive as well as demonstrates 
the modeling of IoT dynamics in a number of realistic network topologies—namely 
small-world and scale-free networks in addition to lattice, and scale-free networks.

The modeling also expands upon insights obtained from our complex network valida-
tion methodology presented earlier in (Batool and Niazi 2014).

The structure of the paper is as follows: first, necessary background to understand the 
methodology is described. This is followed by the model development. Furthermore, 
results of extensive simulation experiments are presented prior to the conclusion of the 
paper.
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Background
In this section, a brief background is discussed. First, agent-based modeling paradigm is 
discussed giving details of why it is well suited for modeling and studying complex con-
sumer networks. Next, self-organization is discussed. This is followed by a brief back-
ground of the IoT.

Agent‑based modeling

The idea behind agent-based modeling (ABM) is to create models of a complex system 
using individuals or agents as the building blocks. This helps in not only simulating sys-
tems for design and solution of complex problems but also for the resolution of practi-
cal engineering issues (Niazi and Hussain 2011). The simulation is created to implement 
the operations followed by some defined rules where components interact with each 
other to simulate complex environments and even predict emergent behavior (Niazi 
2013). This is done to develop an understanding of the complex natural environment 
with advanced simulation techniques (Bonabeau 2002). ABM models are commonly 
actualized utilizing PC reproductions either by some custom programming or particu-
larly created ABM toolkits taking into account a more profound comprehension of the 
conduct of the general framework in light of the individual operators (Gershenson and 
Niazi 2013). To model such large complex networks agent based modeling and simu-
lation tools are therefore a natural choice (Niazi and Hussain 2011). In previous work 
such as (Niazi and Hussain 2009) it has been demonstrated how complex communica-
tion networks involving autonomous and interacting agents can be modeled using these 
agent-based modeling tools.

Self‑organization

Self-organization is the ability of a system to organize in a meaningful structure without 
any external force as long as certain rules are enforced in the system (Ashby 1991). This 
ability exits in many natural systems such as animals (Hemelrijk and Hildenbrandt 2012), 
human cells (Kadoshima et al. 2013), galaxies (Cen 2014) and other processes (Nicolis 
and Prigogine 1977) such as crystallization. Self-organization emerges as a means of 
maintaining the equilibrium in a system especially where the agents are interdependent.

Self-organization is considered to be an important ability in networks for successful 
networking (Barabási and Albert 1999). This is because the behavior is not controlled by 
external systems and the effect is on whole system. This organization is robust and gives 
the systems a capability to sustain and self-repair the damages or problems occurring in 
a system. Complex network such as Small-world and Scale-free networks also exhibit 
self-organizing capabilities (Wang and Chen 2003; Siemens 2005). Their organizational 
structure is discussed in Section V and the importance of such networks is discussed 
next. An alternate approach to modeling complex phenomena is using system dynamics 
(Azar 2012). Additionally, soft computing also offers techniques not only to model but 
also control complex systems (Zhu and Azar 2015).

Complex networks

One way of modeling complex adaptive systems and complex physical systems is by 
using complex networks (Niazi and Hussain 2013). Complex networks are loaded graphs 
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ranging from simple networks such as lattice to random networks. These network types 
are important building blocks of complex systems however neither of them might 
behave similar to real-world empirical networks in terms of their topological structure 
(Newman 2010). In the real world, networks need to be analyzed to understand the 
exact features. Two typical network models, which have been categorized in literature 
in terms of corresponding to real-world networks, are the so-called small-world and the 
scale-free networks.

For this paper, the following network models have been implemented using ABM:

1.	 Small-world network
2.	 Scale-free network
3.	 Random network
4.	 Lattice network

Following is a brief introduction of these networks:

Small‑world network

An associated network with a high chart distance across and when edges are included 
haphazardly, the measurement diminishes radically. This network is sometimes also 
called a “six degrees of separation” in social networks where any individual turns to be 
linked with any other individual by maximum of six links. In this network, the nodes 
mostly are not neighbors to each other; instead, they become neighbors by making links 
with other nodes also. Therefore, in simple words it can be understood as fewer nodes 
with more links. Mathematically, it is satisfied by:

A small-world system has the accompanying properties:

1.	 Clustering coefficient: it is a measure of degree to which hubs in a chart tend to 
bunch together. Clustering coefficient for one node is calculated by following for-
mula:	

Clustering coefficient of entire system is ascertained by following formula:

N = Number of nodes, C = Clustering coefficient for each node i.
2.	 Mean-shortest path length: The small-world components has been perceived in 

numerous real world graphs, for example, social networks, neural systems, pro-
gramming frameworks, road plans, food chains and electric power matrices and so 
on. Small-world systems are made of connections of a   d dimensional grid where 
we supplant a fraction P with connections, arbitrarily, by interjecting it among two 
instances of a usual lattice i.e. (P = 0) and a random graph (P = 1). Considering a 
ring having n vertices, among which each is associated with its k closest neighbors 

(1)LαLog(N )

(2)Ci =
number of links

MaximumNumber of Links

(3)C =
1

N

(

∑

i

Ci

)



Page 5 of 19Batool and Niazi ﻿Complex Adapt Syst Model  (2017) 5:4 

by undirected edges. At that point, a vertex and edge is chosen for connecting with 
nearest neighbor in a clockwise direction. Edge is reconnected to a vertex picked 
consistently at irregular over the whole ring on premise of probability p, by main-
taining a strategic distance from the duplicate edges or leaving the edge set up. This 
procedure is rehashed on moving clockwise around the ring and considering every 
vertex until one lap finishes. Next, edges are viewed as the vertices connected to their 
second-closest neighbors clockwise utilizing the same process as outline above. This 
continues until every edge in the original lattice has been considered at least once.

Scale‑free network

Scale-free network is one of the complex networks in which the connectivity of nodes 
with the other nodes is extremely uneven. This means that there are a few nodes that 
have dense connectivity, while majority of the nodes have a comparatively less number 
of connections. Densely connected nodes are often termed as the “Hubs”. Scale-free net-
work is considerably focused on these nodes. Modeling the dynamics in such systems 
plainly exhibits that a scale-free network can develop when systems increment by adding 
hubs to an officially existing system, and those hubs have a tendency to join specially to 
the hubs which are as of now very much associated. The probability that a hub will inter-
face with k different hubs in a given system is specifically corresponding to k−γ, which 
suggests that a scale-free network takes after a Power Law of degree distribution of hubs.

To begin the network with an underlying condition of mo hubs (mo ≥ 2) the degree of 
every hub ought to be at least 1, in light of the fact that generally hubs will stay disen-
gaged from whatever is left of the system. New hubs in a steady progression are included. 
The new node is connected to the old node, which has the high probability of number of 
links already existing. Formally, the probability pi that the new hub is associated with 
hub i is

In Eq. 4, ki is the degree of hub i in real networks is with the end goal that, there is a 
nonzero likelihood that another hub will join to a confined hub display in the network. 
Heavily linked nodes called ‘Hubs are more probable and rapidly tend to accumulate 
much more connections, while hubs with just a couple connections are probably not 
going to be picked as the goal for another connection. It implies that the new hubs will 
have an inclination to get associated themselves to the effectively existing substantial 
connected hubs. The figures below, shows how this method of how the nodes choose to 
attachment themselves to make a scale free network. According to scale-free model, this 
one at a time attaching of node helps the network to grow. Then the new node in the net-
work tend to prefer to get connected to the nodes with heavy links, meaning that it tries 
to attach the node near itself which has the highest degree.

Random network

Consider a network framed by interfacing diverse vertices in an arbitrary way, scien-
tifically alluded to as the Erdős–Rényi random network model (ERDdS and Wi 1959). 

(4)
∏

(ki) =
ki

∑

j kj
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Formally, a random network GR(n, p) is framed with edges associated with a likelihood, 
p given that 0 < p < 1.

A Random Network is shaped by associating vertices with each other in an arbitrary 
way. The connectivity of nodes is not dependent on the links of the nodes. For analyz-
ing a random network, take a simple example where edges are added at random to the 
n isolated vertices of a graph, where n is fixed. One way to understand this is to assume 
that for all nC2 =

n(n−1)
2

 edges that are viable in a graph with n vertices, there are equal 
chances that a particular edge will be separately added to the graph. One way is to simply 
add the edges at random. This is similar to tossing a coin in the air. A sub graph is cre-
ated for the edge when the coin comes up heads for a particular link.

Specifically, random graphs do not provide solution to tackle with such networks, 
which grow with time hence additional ideas are needed to bring them to practicality, 
for which the complex networks have been evolved.

Lattice network

A lattice network GL is made out of vertices with the end goal that every vertex associ-
ates with four different vertices to frame a work as a four-connected grid. This network 
structure has a growing nature and thus allows unlimited capacity which increases the 
functionality and simplifies routing in network (Beshai 2005). The edge modules are 
addressed using logical coordinates, one coordinate being assigned for each of the N 
dimensions. This simplifies routing and permits each edge module to compute its own 
routing tables (Beshai 2005).

Internet of things

The IoT is a rapidly growing infrastructure and concept, primarily due to standard con-
nectivity features in consumer electronics devices (Ashton 2009). IoT has resulted in 
consumer networks with remote device connectivity. Fully integrating IoT with technol-
ogy will give huge opportunities for information and communication technologies (ICT) 
sector, which will give rise to the development of new applications, software and devices. 
As this area has not fully developed and needs more researches, this area is still lacking 
a standard architecture, which can be followed for further development and advance-
ments. Many challenges have been recognized which hinder the deployment of IoT. Few 
of the challenges are the interoperability issue of devices while providing security, pri-
vacy and functionality and should have low computational power and energy capacity as 
it is a fundamental requirement for the upcoming solutions (Ashton 2009).

Model development for self‑organized power consumption approximation 
algorithm
Here, we propose a model on self-organized power consumption approximation 
(SOPCA) algorithm in the IoT. Moreover, a brief analysis is given on the simulation envi-
ronment and model development of the networks.

Definition 1 Scenario of the IoT  To sensibly show the IoT, a huge set S of organized 
buyer electronic gadgets associated with each other in various setups is considered. To 
show distinctive potential outcomes of availability for these gadgets, two diverse network 
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modeling strategies—random network connectivity strategy (CR) providing irregular sys-
tem availability procedure and lattice network connectivity strategy (CL) providing cross 
section arrange network methodology are illustrated. Next, the proposed algorithm on 
two more network strategies small-world, (CS) and scale-free, (CSf ) connectivity strat-
egies is implemented. Practical implementations can result any multi-agent program-
ming toolbox equipped for execution on these consumer devices (Ughetti et al. 2008). 
An abstract overview of concept illustration of implementing the proposed algorithm on 
mentioned networks is shown in Fig. 1.

SOPCA algorithm

The main concept of SOPCA algorithm is presented in  Fig. 2, earlier proposed in (Batool 
and Niazi 2015). The idea is to exploit wireless connectivity between peer devices in con-
junction with a server. Devices are able to locate and communicate with other devices 
by means of an agent—termed as the energy sniffer agent (ESA). ESAs can find other 
devices in addition to keeping an estimate of the energy consumption discovered while 
exploration. Each ESA has a time-to-live (TTL), which when completed can either result 
in their termination or else have them return to the sink nodes. It is noted here that com-
parable thoughts of availability of different customer gadgets have additionally already 
been presented in (Niazi 2008; Niazi and Hussain 2011). Source nodes can find different 

Fig. 1  SOPCA algorithm over different network strategies

Fig. 2  SOPCA mechanism
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nodes in their nearness by utilizing either signal strength or global positioning system 
(GPS). ESAs overhaul their inner factors in light of perception of nearby energy utiliza-
tion and next proceed onward to different nodes. To stay away from re-routing through 
various discovered gadgets, ESA’s can likewise set a flag on each device.

Akyldiz noticed that energy cost of transmitting 1  KB at a separation of 100  m is 
around the same as that for executing 3 million instructions by a 100 million instructions 
for each second(MIPS)/W processor (Akyildiz et al. 2002). In other words, transmission 
of the packets and gathering expends a similar measure of energy cost for short-range 
correspondence. This power is not only used for transmitting and receiving data but also 
for turning the devices on and off. Even though this start-up time (turning on and off) 
is very small (100 μs), still this time is noticeable. Radio power consumption (Pc) is pre-
sented as:

where Pc: power consumption, Pout: output power of the transmitter, PR: power con-
sumed by the receiver, NT : number of times the transmitter is exchanged on per unit 
time, NR: number of times the receiver is exchanged on per unit time, Ton: transmitter on 
time, Tst: transmitter startup time, Ron: receiver on time, Rst: receiver startup time.

Model development of networks

Here, four different networks are modeled. Two of the networks belong to non-real 
world and two are from real-world: random and lattice, small-world and scale-free net-
works. Next, these network models are described.

Random network

Figure 3 shows the simulation algorithm for creating random network. For all the nodes, 
shape and color are set. These nodes are placed randomly on the grid. At the point when 
the nodes have been made, every node joins with a haphazardly picked node however 
never to itself. Here, a probability, p for creating links within network is set. According 
to appropriate p, the links will neither be loosely connected nor have too congested con-
nections in networks. And lastly, a source node randomly is chosen.

(5)Pc = NT [PT (Ton + Tst)+ Pout(Ton)] + NR[PR(Ron + Rst)]

Fig. 3  Algorithm for simulating random network
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Lattice network

In the procedure directed in Fig.  4, each patch grows one node on the network. Source 
nodes are to be chosen arbitrarily after the patch area is filled with nodes.

Small‑world network

In Fig.  5, the simulation algorithm for creating small-world network is described. Ini-
tially nodes are created and shape is set. Any success variable is set as false. While in case 
of an unsuccessful attempt, perform wire-them function and in case of success perform 
do-calculations function. Any variable named clustering-coefficient value is set as clus-
tering-coefficient; shortest-path-length-of-lattice is set as a shortest-path. If there are 
no-nodes left, stop if there are nodes then link is created with other nodes but if count 
links are greater than number of links than it will make the link die.

In order to find the clustering coefficient a function is made for it. The clustering-coef-
ficient and total is set initially as 0.

Next, the nodes interface with its neighbors is checked if: link-neighbors are not 
exactly or equivalent to one then the node-clustering-coefficient is set unspecified. 
Nodes with link-neighbors greater than 1 will play out the calculations for finding the 

Fig. 4  Algorithm for simulating lattice network

Fig. 5  Algorithm for simulating small-world network
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clustering-coefficient. Clustering-coefficient is calculated at all nodes. It is summed and 
stored it altogether. Lastly, minimum separation is taken.

Scale‑free network

To make a scale-free network, the simulation algorithm as in Fig.  6 is described. The 
‘node = nobody’ makes a node in the network which do not connect to any other node 
as it is the main node in the system. Function ‘make node 1’ makes another node in the 
system which connections to node 0 as the function ‘old-node! = nobody’ turned true, 
in the Fig.  6. At the point when the initial two nodes have been made and connected 
together in the network, function ‘add node’ keeps running until the number of nodes is 
less than the number-of-nodes, N.

Simulation setup

To demonstrate the utility of the proposed algorithm, it is implemented on various net-
work topologies with different configurations discussed later. For comparison, random 
as well as real world networks are considered. Therefore, before modeling the complex 
system as more realistic networks, some fundamental principles need to be defined.

In order to test the models and SOPCA algorithm on any of the simulator, some physi-
cally meaningful and appropriate metrics to characterize both the simulated and actual 
event lists are identified.

An energy model is utilized to evaluate the power consumption. A basic model 
expected by Lin et al. (2012) have the radio dissipation Eelec = 50 nJ/bit to run the trans-
mitter or receiver hardware Eamp = 0.1 nJ/bit/m2 and for the transmission amplifier to 
accomplish an adequate Eb/No. In this way, to transmit a k-bit message a separation d 
utilizing this radio model, the radio exhausts:

While to get this message, the radio uses:

(6)ETx(k , d) = Eeleck + εampkd
2

(7)ERx(k) = Eeleck

Fig. 6  Algorithm for simulating scale-free network
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Putting values in Eq. (6), where range, R = 10; εamp = 0.1 nJ/bit/m2, Eelec = 50 nJ/bit

K = message = 64 bytes = 64.8 = 512 bits

Next, values are calculated using Eq.  (7) in order to estimate the received energy. 
Where R = 10:

Finally, total energy is obtained by adding transmit and receive energies.
For R = 10:

Experiments and metrics

To see the behavior of how much energy is consumed by a message when going from the 
source node to the sink node utilizing different path every time. Therefore, parameters 
are swept and observed for which combination it dissipates what energy. For the mod-
els, nodes are deployed according to their network configurations. The white nodes are 
the source nodes, which will generate messages and transfer it to the nearest possible 
node in its transmission range. This process of transferring of message to the node keeps 
on going until the message reaches to the sink node, which is red in color, or the time-
to-live (ttl) of message expires. As the message moves to the nearest possible node, the 
transmitter node’s energy decreases. Nodes initial energy is set to 0.25 J. When a node 
transmits the message, energy of 0.015 J is consumed by approximately (for a message 
containing 64 bytes of data). The simulated test environment is set according to the fol-
lowing settings:

• • 100 m × 100 m2 region
• • Number of nodes = 300, 400, 500
• • Number of sources = 5, 10, 15, 20
• • Transmission range = 10 m
• • Networks: random network, lattice network, small world network, scale-free net-

work
• • No. of runs = 4 (1, 10, 20, 30 runs)

ETx(k , d) =
(

50 · 10−9
)

· 512+

(

0.1 · 10−9
)

· 512 · (10)2

=

(

2.56 · 10−5
)

+

(

5.12 · 10−6
)

=

(

3.072 · 10−5
)

ETx(k , d) = 30.72µJ

ERx(k) = Eeleck

=

(

50 · 10−9
)

· 512

=

(

2.56 · 10−5
)

ERx(k) = 25.6µJ

E = ETx(k , d)+ ERx(k)

E = 30.72µJ+ 25.6µJ

E = 56.3µJ
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Results and discussion
Estimation of energy consumption

Here, we examine energy consumption estimation. The idea of energy consumption 
includes three separate major tasks—namely sensing, computation, and communica-
tion. Previous work has noted that communication is one of the most power-consum-
ing task amongst these three (Kimura and Latifi 2005). The paper estimates an almost 
equal transmission and reception cost for short-range communication. Therefore, a real-
istic model can initialize devices with energy of 0.25  J. Besides, a transmission energy 
of 0.015  J may be used for messages limited to 64 bytes (Lin et  al. 2012). These basic 
parameters are suggested to be kept for a realistic estimation of power consumption in 
networks.

Discussion of simulation results

The proposed mechanism is simulated and shows that it can measure the energy 
released by the electronic devices connected over a network irrespective of the topology 
it follows. The experiments were averaged over 30 executions. These experiments were 
performed for N = 300, 400 and 500 for varying number of source nodes. Total energy 
consumption was measured in mili Joules (mJ), simulated in a transmission range set to 
R = 10 m. Also see Table 1 for simulation parameters used and Table 2 for estimation 
power consumption for networks consisting of N = 500.

Networks are simulated with different configurations using ABM tool and imple-
mented SOPCA algorithm. The algorithm was tested to analyze the power consumption 
effects on smaller and larger networks.

Table 1  Simulation parameters

Symbol Value

N, number of nodes 300, 400, 500

S, number of source nodes 5

R, transmission range 10 m

Eelec, radio dissipation 50 nJ/bit

ETx, transmitter electronics 50 nJ/bit

ERx, receiver electronics 50 nJ/bit

Eamp, transmit amplifier 0.1 nJ/bit/m2

CPsize, size of control packet 1 byte

DPsize, size of data packet 64 bytes

Senergy, initial energy of sensor nodes 0.25 J

Table 2  Power estimation using SOPCA algorithm over network, N = 500

Network SOPCA algorithm power estimation (mJ)

Random network 3–16

Lattice network 4–18

Small-world network 2–17.5

Scale-free network 4–22
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For random network, Figs.  7, 8 and 9 show the networks for varying number of nodes. 
They show the power consumption increases as the networks become larger and also 
when network is tested for increasing number of runs.  

For lattice network, Figs.   10, 11 and 12 show the networks for varying number of 
nodes. The figures show power consumption behavior as random for different runs but 
it remains the same for different sizes of networks. It is because the topology has been 
remained the same throughout.  

For small-world network, Figs.  13, 14 and 15 show the networks for varying number 
of nodes. The figures show power consumption behavior is almost similar with different 
number of network sizes but slightly different for varying number of source nodes. This 
is due to the structure of the network.  

For scale-free network, Figs.  16, 17 and 18 show the networks for varying number of 
nodes. The figures show power consumption behavior is almost similar with different 
number of network sizes but slightly different for varying number of source nodes. Simi-
larly, this is also due to the network topology.  

Fig. 7  SOPCA on random network with N = 500

Fig. 8  SOPCA on random network with N = 300
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Related work

Some of the key recent papers in modeling the IoT include paper by Laghari and 
Niazi (2016) which apply the cognitive agent-based computing to model power 

Fig. 9  SOPCA on random network with N = 400

Fig. 10  SOPCA on lattice network with N = 500

Fig. 11  SOPCA on lattice network with N = 300
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Fig. 12  SOPCA on lattice network with N = 400

Fig. 13  SOPCA on small-world network with N = 500

Fig. 14  SOPCA on small-world network with N = 300
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consumption architecture. However, their paper does not take care of large-scale 
complex networks such as in the domain of random/lattice, scale-free and small-
world networks.

Fig. 15  SOPCA on small-world network with N = 400

Fig. 16  SOPCA on scale-free network with N = 500

Fig. 17  SOPCA on scale-free network with N = 300
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In like manner, the paper by Altamimi and Ramadan (2016) presents a way to deal 
with displaying IoT using a gateway approach. Their proposed approach focuses on the 
use of gateways for more effective communication. Likewise Mashal et al. (2016) present 
the use of graph-based approaches in recommendation systems for the IoT. Zhang et al. 
(2016) demonstrate the use of Petri nets to model interactions between the sensors and 
the environment.

Conclusion
In this paper, we show for the first time, a way to deal with displaying the IoT by con-
solidating agent-based modeling with complex networks utilizing methods exhibited 
before under the cognitive agent-based computing framework. To show the proposed 
demonstrating system, a self-organizing distributed algorithm for dynamic approxima-
tion of power utilization in organized customer electronic gadgets is additionally exhib-
ited. As an approval of ideas, extensive simulation experiments have been exhibited. 
SOPCA algorithm was tested over random, lattice, small-world and scale-free networks. 
These networks are an estimate of exceptionally dense networks of consumer electronic 
gadgets, for example, internet of things. The newness of the exhibited work lies both in 
the modeling of the Internet of Things utilizing complex networks and in the utiliza-
tion of agent-based models in addition to the proposed SOPCA algorithm. The essential 
thoughts from SOPCA algorithm can be further investigated by the assessment of flood-
ing over these systems. The SOPCA algorithm has been implemented in realistic stand-
ard complex network topologies. Further analysis was conducted to measure energy 
consumption by nodes using varying metrics. In addition, we have demonstrated how 
the total network power consumption of SOPCA algorithm in the IoT networks can be 
evaluated by means of varying different metrics. In future, this work can be extended 
by implementing in IoT real network problem. Not only may this; to further elaborate 
our research work contributions, flexible simulation parameters for network strategies 
be used.
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