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Background
Many combinatorial optimization problems are NP-hard, and the theory of NP-com-
pleteness has reduced hopes that NP-hard problems can be solved within polynomi-
ally bounded computation times (Dahlke 2008; Dunne 2008). Nevertheless, sub-optimal 
solutions are sometimes easy to find. Consequently, there is much interest in approxi-
mation and heuristic algorithms that can find near optimal solutions within reasonable 
running time. Heuristic algorithms are typically among the best strategies in terms of 
efficiency and solution quality for problems of realistic size and complexity.

In contrast to individual heuristic algorithms that are designed to solve a specific prob-
lem, meta-heuristics are strategic problem solving frameworks that can be adapted to 
solve a wide variety of problems. Meta-heuristic algorithms are widely recognized as one 
of the most practical approaches for combinatorial optimization problems. The most 
representative meta-heuristics include genetic algorithms, simulated annealing, tabu 
search and ant colony. Useful references regarding meta-heuristic methods can be found 
in Glover and Kochenberger (2006).

The generalized traveling salesman problem (GTSP) has been introduced in Laporte and 
Nobert (1983) and Noon and Bean (1991). The GTSP has several applications to location 
and telecommunication problems. More information on these problems and their appli-
cations can be found in Fischetti et al. (1997, 2007) and Laporte and Nobert (1983).

Several approaches were considered for solving the GTSP: a branch-and-cut algorithm 
for Symmetric GTSP is described and analyzed in Fischetti et al. (1997), and Noon and 
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Bean (1991) is given a Lagrangian-based approach for Asymmetric GTSP, in Snyder and 
Daskin (2006) is described a random-key genetic algorithm for the GTSP, in Renaud and 
Boctor (1998) it is proposed an efficient composite heuristic for the Symmetric GTSP etc.

The aim of this paper is to provide an exact algorithm for the GTSP as well as an effective 
meta-heuristic algorithm for the problem. The proposed meta-heuristic is a modified ver-
sion of Ant Colony System (ACS). Introduced in (Maniezzo 1992; Dorigo 1992), Ant System 
is a heuristic algorithm inspired by the observation of real ant colonies. ACS is used to solve 
hard combinatorial optimization problems including the traveling salesman problem (TSP).

Definition and complexity of the GTSP
A definition of generalized traveling salesman problem (TSP) based on  Laporte and 
Nobert (1983) and Noon and Bean (1991) follows.

Let G = (V ,E) be an n-node undirected graph whose edges are associated with non-
negative costs. We will assume w.l.o.g. that G is a complete graph (if there is no edge 
between two nodes, we can add it with an infinite cost).

Let V1, ...,Vp be a partition of V into p subsets called clusters (i.e. V = V1 ∪ V2 ∪ ... ∪ Vp 
and Vl ∩ Vk = ∅ for all l, k ∈ {1, ..., p}). We denote the cost of an edge e = {i, j} ∈ E by cij.

The GTSP asks for finding a minimum-cost tour H spanning a subset of nodes such that 
H contains exactly one node from each cluster Vi, i ∈ {1, ..., p}. The problem involves two 
related decisions: choosing a node subset S ⊆ V , such that |S ∩ Vk | = 1, for all k = 1, ..., p 
and finding a minimum cost Hamiltonian cycle in the subgraph of G induced by S.

Such a cycle is called a Hamiltonian cycle. The GTSP is called symmetric if and only if 
the equality c(i, j) = c(j, i) holds for every i, j ∈ V , where c is the cost function associated 
to the edges of G.

An exact algorithm for the GTSP
In this section, we present an algorithm that finds an exact solution to the GTSP.

Given a sequence (Vk1 , ...,Vkp) in which the clusters are visited, we want to find the 
best feasible Hamiltonian tour H∗ (w.r.t cost minimization), visiting the clusters accord-
ing to the given sequence. This can be done in polynomial time by solving |Vk1 | shortest 
path problems as described below.

We construct a layered network, denoted by LN, with p+ 1 layers corresponding to the 
clusters Vk1 , ...,Vkp and in addition we duplicate the cluster Vk1. The layered network contains 
all the nodes of G plus some extra nodes v′ for each v ∈ Vk1. There is an arc (i,  j) for each 
i ∈ Vkl and j ∈ Vkl+1

 (l = 1, ..., p− 1), with the cost cij and an arc (i, h), i, h ∈ Vkl, (l = 2, ..., p) 
with the cost cih. Moreover, there is an arc (i, j′) for each i ∈ Vkp and j′ ∈ Vk1 with the cost cij′.

For any given v ∈ Vk1, are considered paths from v to w′, w′ ∈ Vk1, that visits exactly one 
node from each cluster Vk2 , ...,Vkp, hence it gives a feasible Hamiltonian tour. Conversely, 
every Hamiltonian tour visiting the clusters according to the sequence (Vk1 , ...,Vkp) cor-
responds to a path in the layered network from a certain node v ∈ Vk1 to w′ ∈ Vk1.

Therefore the best (w.r.t cost minimization) Hamiltonian tour H∗ visiting the clusters 
in a given sequence can be found by determining all the shortest paths from each v ∈ Vk1 
to each w′ ∈ Vk1 with the property that visits exactly one node from cluster. The overall 
time complexity is then |Vk1 |O(m+ n log n), i.e. O(nm+ n log n) in the worst case. We 
can reduce the time by choosing |Vk1 | as the cluster with minimum cardinality. It should 
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be noted that the above procedure leads to an O(nm+ n log n) time exact algorithm for 
the GTSP. Therefore we have established the following result:

Theorem  The above procedure provides an exact solution to the GSTP in 
O((p− 1)!(nm+ n log n)) time, where n is the number of nodes, m is the number of edges 
and p is the number of clusters in the input graph.

Clearly, the algorithm presented is an exponential time algorithm unless the number 
of clusters p is fixed.

Ant Colony System
Ant System proposed in Dorigo (1992) and Maniezzo (1992) is a multi-agent approach 
used for various combinatorial optimization problems. The algorithms were inspired by 
the observation of real ant colonies.

An ant can find shortest paths between food sources and a nest. While walking from 
food sources to the nest and vice versa, ants deposit on the ground a substance called 
pheromone, forming a pheromone trail. Ants can smell pheromone and, when choosing 
their way, they tend to choose paths marked by stronger pheromone concentrations. It 
has been shown that this pheromone trail following behavior employed by a colony of 
ants can lead to the emergence of shortest paths.

When an obstacle breaks the path ants try to get around the obstacle randomly choosing 
either way. If the two paths encircling the obstacle have the different length, more ants pass 
the shorter route on their continuous pendulum motion between the nest points in particular 
time interval. While each ant keeps marking its way by pheromone the shorter route attracts 
more pheromone concentrations and consequently more and more ants choose this route. 
This feedback finally leads to a stage where the entire ant colony uses the shortest path. There 
are many variations of the ant colony optimization applied on various classical problems.

Ant System make use of simple agents called ants which iteratively construct candi-
date solution to a combinatorial optimization problem. The ants solution construction is 
guided by pheromone trails and problem dependent heuristic information.

An individual ant constructs candidate solutions by starting with an empty solution 
and then iteratively adding solution components until a complete candidate solution is 
generated. Each point at which an ant has to decide which solution component to add to 
its current partial solution is called a choice point.

After the solution construction is completed, the ants give feedback on the solutions they 
have constructed by depositing pheromone on solution components which they have used 
in their solution. Solution components which are part of better solutions or are used by 
many ants will receive a higher amount of pheromone and, hence, will more likely be used 
by the ants in future iterations of the algorithm. To avoid the search getting stuck, typically 
before the pheromone trails get reinforced, all pheromone trails are decreased by a factor.

Ant Colony System was developed to improve Ant System, making it more efficient and 
robust. Ant Colony System works as follows:

• • m ants are initially positioned on n nodes chosen according to some initialization 
rule, for example randomly.

• • Each ant builds a tour by repeatedly applying a stochastic greedy rule—the state 
transition rule.
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• • While constructing its tour, an ant also modifies the amount of pheromone on the 
visited edges by applying the local updating rule.

• • Once all ants have terminated their tour, the amount of pheromone on edges is mod-
ified again by applying the global updating rule. As was the case in ant system, ants 
are guided, in building their tours by both heuristic information and by pheromone 
information: an edge with a high amount of pheromone is a very desirable choice.

• • The pheromone updating rules are designed so that they tend to give more phero-
mone to edges which should be visited by ants.

The ants solutions are not guaranteed to be optimal with respect to local changes and 
hence may be further improved using local search methods. Based on this observation, the 
best performance are obtained using hybrid algorithms combining probabilistic solution 
construction by a colony of ants with local search algorithms as 2–3 opt, tabu-search etc.

In such hybrid algorithms, the ants can be seen as guiding the local search by con-
structing promising initial solutions, because ants preferably use solution components 
which, earlier in the search, have been contained in good locally optimal solutions.

Reinforcing Ant Colony System for GTSP
An ACS for the GTSP it is introduced. In order to enforces the construction of a valid 
solution used in ACS a new algorithm called reinforcing Ant Colony System (RACS) it is 
elaborated with a new pheromone rule as in Pintea and Dumitrescu (2005) and phero-
mone evaporation technique as in Stützle and Hoos (1997).

Let Vk(y) denote the node y from the cluster Vk. The RACS algorithm for the GTSP 
works as follows:

• • Initially the ants are placed in the nodes of the graph, choosing randomly the clusters 
and also a random node from the chosen cluster.

• • At iteration t + 1 every ant moves to a new node from an unvisited cluster and the 
parameters controlling the algorithm are updated.

• • Each edge is labeled by a trail intensity. Let τij(t) represent the trail intensity of the 
edge (i,  j) at time t. An ant decides which node is the next move with a probability 
that is based on the distance to that node (i.e. cost of the edge) and the amount of 
trail intensity on the connecting edge. The inverse of distance from a node to the 
next node is known as the visibility, ηij = 1

cij
.

• • At each time unit evaporation takes place. This is to stop the intensity trails increas-
ing unbounded. The rate evaporation is denoted by ρ, and its value is between 0 and 
1. In order to stop ants visiting the same cluster in the same tour a tabu list is main-
tained. This prevents ants visiting clusters they have previously visited. The ant tabu 
list is cleared after each completed tour.

• • To favor the selection of an edge that has a high pheromone value, τ, and high visibil-
ity value, η a probability function pk iu is considered. J k i are the unvisited neighbors 
of node i by ant k and u ∈ J k i,u = Vk(y), being the node y from the unvisited cluster 
Vk. This probability function is defined as follows: 

(1)
pk iu(t) =

[τiu(t)][ηiu(t)]
β

�o∈J k i
[τio(t)][ηio(t)]β

,
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 where β is a parameter used for tuning the relative importance of edge cost in select-
ing the next node. pk iu is the probability of choosing j = u, where u = Vk(y) is the 
next node, if q > q0 (the current node is i). If q ≤ q0 the next node j is chosen as 
follows: 

 where q is a random variable uniformly distributed over [0, 1] and q0 is a parameter 
similar to the temperature in simulated annealing, 0 ≤ q0 ≤ 1.

• • After each transition the trail intensity is updated using the correction rule from 
Pintea and Dumitrescu (2005): 

 where L+ is the cost of the best tour.
• • In ACS only the ant that generate the best tour is allowed to globally update the pher-

omone. The global update rule is applied to the edges belonging to the best tour. The 
correction rule is 

 where �τij(t) is the inverse cost of the best tour.
• • In order to avoid stagnation we used the pheromone evaporation technique intro-

duced in Stützle and Hoos (1997). When the pheromone trail is over an upper bound 
τmax, the pheromone trail is re-initialized. The pheromone evaporation is used after 
the global pheromone update rule.

The RACS algorithm computes for a given time timemax a sub-optimal solution, the opti-
mal solution if it is possible.

Representation and computational results
A graphic representation of RACS for solving GTSP is shown in Fig. 1. At the beginning, 
the ants are in their nest and will start to search food in a specific area. Assuming that 
each cluster has specific food and the ants are capable to recognize this, they will choose 
each time a different cluster. The pheromone trails will guide the ants to the shorter 
path, a solution of GTSP, as in Fig. 1.

To evaluate the performance of the proposed algorithm, the RACS was compared to 
the basic ACS algorithm for GTSP and furthermore to other heuristics from literature: 
nearest neighbor (NN), a composite heuristic GI3 and a random key-Genetic Algorithm 
(Renaud and Boctor 1998; Snyder and Daskin 2006). The numerical experiments that 
compare RACS with other heuristics used problems from TSP library (Bixby and Reinelt 
1995). TSPLIB provides optimal objective values for each of the problems. Several prob-
lems with Euclidean distances have been considered. The exact algorithm proposed in 
“An exact algorithm for the GTSP” section, is clearly outperformed by heuristics includ-
ing RACS, because his running time is exponential, while heuristics including RACS are 
polynomial time algorithms and provide good sub-optimal solution for reasonable sizes 
of the problem.

(2)j = argmax
u∈J ki

{τiu(t)[ηiu(t)]
β},

(3)τij(t + 1) = (1− ρ)τij(t)+ ρ
1

n · L+
.

(4)τij(t + 1) = (1− ρ)τij(t)+ ρ�τij(t),
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Reinforcing Ant Colony System algorithm for the GTSP

Fig. 1  A graphic representation of the generalized traveling salesman problem (GTSP) solved with an ant-
based heuristic called reinforcing Ant Colony System (RACS) is illustrated. The first picture shows an ant starting 
from the nest to find food, going once through each cluster and returning to the nest; all the ways are 
initialized with the same τ0 pheromone quantity; after several iterations performed by each ant from the nest, 
the solution is visible. The second picture shows a solution of generalized traveling salesman problem (GTSP) 
represented by the largest pheromone trail (thick lines); the pheromone is evaporating on all the other trails 
(gray lines)
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To divide the set of nodes into subsets we used the procedure proposed in Fischetti et al. 
(1997). This procedure sets the number of clusters m = [n/5], identifies the m farthest 
nodes from each other, called centers, and assigns each remaining node to its nearest 
center. Obviously, some real world problems may have different cluster structures, but 
the solution procedure presented in this paper is able to handle any cluster structure. Lnn 
is the result of NN algorithm. In NN algorithm the rule is always to go next to the nearest 
as-yet-unvisited location. The corresponding tour traverses the nodes in the constructed 
order.The initial value of all pheromone trails is τ0.

For the pheromone evaporation phase, let denote the upper bound with τmax.

The decimal values can be treated as parameters and can be changed if it is necessary. 
The parameters for the algorithm are critical as in all other ant systems. Currently there 
is no mathematical analysis developed to give the optimal parameter in each situation. 
In the ACS and RACS algorithm the values of the parameters were chosen as follows: 
β = 5 , ρ = 0.5, q0 = 0.5.

In Table   1 are the comparative computational results for solving the GTSP using ACS, 
RACS and NN, GI3 and random key-Genetic Algorithm. The columns in Table  1 are as follows.

• • 	 Problem The name of the test problem. The digits at the beginning of the name give the 
number of clusters (nc); those at the end give the number of nodes (n).

• • 	 Opt.val. The optimal objective value for the problem (Snyder and Daskin 2006).
• • 	 ACS, RACS, NN, GI3, GA The objective value returned by the included algorithms.

Table  1 includes the best solutions in italic format. All the solutions of ACS and RACS 
are the average of five successively run of the algorithm, for each problem. Termina-
tion criteria for ACS and RACS is given by the timemax = 10 min. For statistics is used 
the percentage relative error, (PER) where the absolute error is the absolute difference 
between best solution and the obtain solution from Table  1.

The averages of PER are 0.71% for ACS, 11.50% for NN, 0.98% for GI3, 0.16% for GA and 
the best value 0.10% for RACS. The same for the maximal PER values are: 6.52% for ACS, 
36.87% for NN, 5.91% for GI3, 2.33% for GA and the best value 0.87% for RACS. The sta-
tistics shows that RACS for GTSP comparatively performed well. It can be improved if 
more appropriate values for the parameters are used. Also, an efficient combination with 
other algorithms can potentially improve the results.

(5)τ0 =
1

n · Lnn
.

(6)τmax =
1

1− ρ
·

1

Lnn
.

PER =
Absolute error

best value
× 100
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Conclusions
The basic idea of ACS is that of simulating the behavior of a set of agents cooperating 
to solve an optimization problem by means of simple communications. The algorithm 
introduced to solve the GTSP, called RACS, an ACS-based algorithm with new correc-
tion rules. The computational results of the proposed algorithm are good and competi-
tive in both solution quality and computational time with the existing heuristics (Renaud 
and Boctor 1998; Snyder and Daskin 2006). The RACS results can be improved with bet-
ter values of parameters or using hybrid algorithms. Some disadvantages refer the mul-
tiple parameters used for the algorithm and the high hardware resources requirements.

Table 1  Reinforcing Ant Colony System (RACS) versus other algorithms

Problem Opt. val. ACS RACS NN GI
3 GA

11EIL51 174 174 174 181 174 174

14ST70 316 316 316 326 316 316

16EIL76 209 209 209 234 209 209

16PR76 64,925 64,925 64,925 76,554 64,925 64,925

20RAT99 497 497 497 551 497 497

20KROA100 9711 9711 9711 10,760 9711 9711

20KROB100 10,328 10,328 10,328 10,328 10,328 10,328

20KROC100 9554 9554 9554 11,025 9554 9554

20KROD100 9450 9450 9450 10,040 9450 9450

20KROE100 9523 9523 9523 9763 9523 9523

20RD100 3650 3650.4 3650 3966 3653 3650

21EIL101 249 249 249 260 250 249

21LIN105 8213 8215.4 8213 8225 8213 8213

22PR107 27,898 27,904.4 27,898 28,017 27,898 27,898

22PR124 36,605 36,635.4 36,605 38,432 36,762 36,605

26BIER127 72,418 72,420.2 72,418 83,841 76,439 72,418

28PR136 42,570 42,593.4 42,570 47,216 43,117 42,570

29PR144 45,886 46,033 45,886 46,746 45,886 45,886

30KROA150 11,018 11,029 11,018 11,712 11,018 11,018

30KROB150 12,196 12,203.6 12,196 13,387 12,196 12,196

31PR152 51,576 51,683.2 51,576.6 53,369 51,820 51,576

32U159 22,664 22,729.2 22,665.6 26,869 23,254 22,664

39RAT195 854 856.4 854 1048 854 854.2

40D198 10,557 10,575.2 10,557.6 12,038 10,620 10,557

40KROA200 13,406 13,466.8 13,407.2 16,415 13,406 13,406

40KROB200 13,111 13,157.8 13,111 17,945 13,111 13,113.4

45TS225 68,345 69,547.2 68,360.6 72,691 68,756 68,435.2

46PR226 64,007 64,289.4 64,028 68,045 64,007 64,007

53GIL262 1013 1015.8 1015.2 1152 1064 1016.2

53PR264 29,549 29,825 29,549.6 33,552 29,655 29,549

60PR299 22,615 23,039.6 22,668.2 27,229 23,119 22,631

64LIN318 20,765 21,738.8 20,790.2 24,626 21,719 20,836.2

80RD400 6361 6559.4 6416.2 7996 6439 6509

84FL417 9651 9766.2 9706.4 10,553 9697 9653

88PR439 60,099 64,017.6 60,570.6 67,428 62,215 60,316.8

89PCB442 21,657 22,137.8 21,806.4 26,756 22,936 22,134
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