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Introduction
Organic tissues are composed of the cells and the extracellular milieu. The external envi-
ronmental stimuli may induce several cellular activities inside the tissue which in turn 
can vary tissue matrix. Such stimuli can be mechanical, hormonal, chemical or electrical 
etc. In the case of mechanical stimuli, the cells within the subjected tissue undergo a few 
aspects of the mechanical stimulus, and decide to alter the tissue matrix in a pertinent 
manner depending upon the aptness of stimulus. The vertebrate skeleton plays a vital 
part in supplying mechanical support. Bone is a mineralized tissue and such mineraliza-
tion is compulsory for its composition. Bone mineralization consists of a well organized 
practice of producing calcium phosphate by bone forming cells and put down in spe-
cific quantities inside the stringy matrix of bone. Bone is normally comprised of elastic 
collagen fiber besieged by firm hydroxyapatite mineral. A skeletal system is structurally 
strengthened by the noteworthy contribution of two main classes of bone tissue, called 
cancellous (trabecular or spongy) and cortical bone (haversian or compact). Cortical 
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bone is a hard and dense tissue on the outer side of the femur with microscopically small 
channels and no marrow. Cancellous bone is a porous composition comprising of a sys-
tem of stiff interrelated strands called trabeculae intermingled with marrow and a large 
number of small blood vessels. It lies in the inner side of the femur.

Mathematical modeling provides a powerful tool to reduce ambiguity, and allows to 
test various experimental and theoretical hypothesis that may be difficult or impossible 
to test in-vitro or in-vivo. There have been relatively few mathematical models proposed 
that study the integrated effects of known bonecell interactions.

In the field of mathematical biology, numerical schemes are usually based on the dis-
cretization of continuum equations. Such equations describe the biological problems at 
the macroscopic scale. The Lattice Boltzmann method, on the other hand has the fea-
sibility to study the multi-scales models. Such models are more realistic and satisfy the 
current challenges of optimization, theory and research. For example, LBM is used in the 
field of oncology (Alemani et al. 2012), it can swiftly demonstrate the complex fluid flows 
of biological problems (Aidun and Clausen 2010), furthermore, the technique has been 
successfully used to model the flow through the bone tissues at the pore scale  (Zeiser 
et al. 2008).

The micro-scopic models and the meso-scopic kinetic equations are usually involved 
in the multi-scale modelling. A two step procedure is involved, which reduces the com-
plexity of the problem. First, the kinetic models are used to incorporate the physical 
properties of the process(es), then the averaged properties obtained, obey the desired 
macro-scopic equations (Mohamad 2011).

In this article we have described the importance of lattice Boltzmann method in 
the field of osteology. In “Bone” section, we have explained in simple words, the bone 
structure and dynamics. Next, in  “Bone surface” section we have outlined the in-sil-
ico attempts to model bone dynamics. In “Bone dynamics and the Lattice Boltzmann 
method” section we have described the lattice Boltzman method and its applications in 
the field of osteology. In  “Mathematical description of the Lattice Boltzman method” 
section, we have explained the method in detail. Finally, some important conclusions are 
drawn and future work is outlined.

Bone
At microscopic level, the principal unit of bone is osteon. In cortical bone, a typical 
osteon is a cylinder about 200 or 250 µm in diameter and 1–2 cm in length. In trabecular 
bone, the osteons are the trabeculae and are ordered in a form beside the lines of average 
principle stress. Long axis of the cortical bone and all osteons, occur in parallel posi-
tions. Each osteon has a fluid occupied excavating or lumen along the center of its long 
axis. Every lumen contains a blood vessel which nourishes the bone cells in the locality 
of that osteon. A system interconnecting all these blood vessels and lumina is known as 
Haversian system. Twenty to thirty concentric lamellae together compose the wall of the 
osteon, the thickness of each lamella is about 70–100 µm. A cement line besieging the 
surface of each osteon is a 1–2 µm dense layer of mineralized matrix lacking in collagen 
fibers.
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Compact bone adheres one of the three forms, namely woven, laminar and haversian 
bone, histologically. Woven bone is an unsystematic stringy bone, and has lesser mineral 
content comparatively to other two. With ontogenesis, the woven bone is transformed to 
laminar bone and at adulthood, partly to haversian bone. The geometric configuration of 
Osteon of haversian bone and the laminae of laminar bone of the same material are dis-
tinct. Bone cells basically lay in lacunae, which is an arrangement of cavities contained 
in a mutual border connecting laminae in both haversian and laminar bone and from 
which expand several fine canals called canaliculi.

Bone surface

Emergence of bone is confined to appositional growth for the reason that mineralized 
bone tissue is inflexible, due to which all processes of bone take place at the surface of 
the bone. Endosteal surface splits into the haversian, endocortical, and trabecular sur-
faces. More than 61% part of the bone surface comprises of trabecular surface (Hall et al. 
2017). Resorbing, forming and resting are three operational states of bone surfaces, and 
at any particular instant bone undergoes one of these states. Osteoblasts and osteoid 
differentiate the bone forming surfaces while osteoclasts lie at the bone resorbing sur-
faces; quiescent or resting surface is liberated of both osteoclasts and osteoblasts. Bone 
lining cells lineup the resting surface. Quiescent is the most occurring state of the bone 
surfaces in the adults. Bone milieu and bone marrow get detached by the lining cells at a 
concentration a bit higher than its solvability.

Cells of bone

Mainly there are four categories of bone cells called osteoclasts, osteoblasts, osteocytes 
and bone lining cells. Osteoclasts are multinucleated cells carrying nuclei from 1 to more 
than 50. The major role of osteoclasts is bone resorption. Generally, resorption cavities 
on the bone surface contain active osteoclasts. Osteoblasts are the bone making cells and 
fabricate all components of the bone. The inner wall of the osteon, during its growth, 
gets narrower because of the embedding of the series of lamellar bone. Osteoblasts are 
the key factors of such implantation. Lamellar bone is a complex which is composed of 
a material like fiberglass. Bone formation consists of firstly the embedding of an organic 
milieu and then the mineralization of the milieu with salts from ions (mainly calcium 
and phosphate) in the extracellular fluid. Osteocytes are the mechano sensors and the 
most profuse cell type in adult bone  (Mullender and Huiskes 1997). After the process 
of bone formation, in a fresh molded osteoid some old embedded osteoblasts get dif-
ferentiated into osteocytes by dropping a lot of their organelles. Bone lining cell are the 
compressed and elongated inactive osteoblasts and cover the resting bone surface. Bone 
lining cells have the capability to form bone, following no former bone resorption, in 
reaction to bone anabolic agents and may govern mineral homeostasis with the compos-
ite of osteoblasts and osteocytes (Kerschnitzki et al. 2013).

Bone remodeling

The combined practice of bone resorption and regeneration is called bone remode-
ling. Due to mechanical stress of the skeleton, bones suffer local microdamages; bone 
remodeling allows the reinstatement of such microdamages. According to low or high 
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mechanical strains of the skeleton bunches of bones are removed or created, respec-
tively. Coupling is referred as the common remodeling process in which bone loss and 
gain remain balanced (Parfitt 1987). A chronic disturbance in this well structured sys-
tem leads to distinct metabolic bone disorders like osteoporosis, cancer metastases and 
Pagets disease. A large reservoir of uncommitted mesenchymal progenitors provides an 
immense supply of osteoblasts lineages which differentiate further into osteoblast cells 
under the complex effects of specific factors like PTH and TGF-β (Canalis et al. 1988). 
After bone formation, osteoblasts either expire or convert to either lining cells or osteo-
cytes. RANK (A receptor activator nuclear factor kappa beta NF–) and RANKL (RANK 
Ligand) accelerate the differentiation of osteoclastic progenitors into more mature oste-
oclasts. Osteoblasts express RANKL on its exterior which attaches to RANK located on 
the surface of precursors of osteoclasts, thus promoting the differentiation and activa-
tion of osteoclasts. After bone resorption osteoclasts die. Stromal/osteoblastic cells also 
generate a soluble decoy receptor called osteoprotegerin (OPG) which pessimistically 
control the contact of RANK and RANKL. RANKL is captured by OPG receptor which 
in turn inhibits the stimulation of RANK expressed by osteoclast. The basic regulatory 
system to control bone remodeling is based on this RANK–RANKL–OPG signaling 
pathway. The molecular and cellular communications generated through such complex 
provide the basic dynamics accountable for sustaining the firm coupling among osteo-
blasts and osteoclasts for the period of ordinary bone turnover.

Fluid in “bone”

The study that deals with modeling the connection between deformation and fluid 
flow in a fluid saturated spongy medium is called poroelasticity (Cowin 2001). As the 
spongy elastic extracellular milieu of bone tissue carries living cells with both intra- and 
extracellular fluid so it can be viewed as a poroelastic material. Bone contains fluid in 
two forms, blood and the interstitial fluid. Interstitial fluid is the stage of fluid when it 
is contained by the pores or spaces of the solid milieu. Transportation of nutrients to 
bone cells immersed in milieu and carrying waste of cells away is the main functioning 
of bone fluid. It also helps to transfer the mineral ions to the bone tissue for reposition 
and salvage (Piert et al. 2001). Bone fluid is also involved in mechanosensory system of 
bone (Weinbaum et al. 1994). The main source of fluid flow in the bones is bone defor-
mation, which is formed by mechanical stress on the skeleton. Such flow occurs over the 
cell membrane, and it is assumed that osteocytes feel the shear stress produced by the 
flowing fluid. Cell populations also get affected by the flow of ionic fluid due to electri-
cal streaming potentials. Bone porousness has three levels inside cortical and cancel-
lous bone, namely vascular porosity, lacunar-canalicular porosity, and collagen apatite 
porosity. All of these levels contain fluid. Osteocyte sustenance, mineral repositing and 
resurgence, and most likely mechanosensation all depend on the dynamics the bone 
fluid in the vascular porosity and lacunar-canalicular porosities. Poroelasticity and elec-
trokinetics can be used as an efficient tool in the experimental study of local bone fluid 
flow, which in turn deals with quite a few questions regarding bone mineralization and 
mechanosensory system (Kapellos et al. 2010).
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Mathematics of bone dynamics
Utilizing the mathematical model as a link between conceptual models and experimen-
tal testing presents significant advantages. The destruction and reconstruction of bone 
tissue is a periodic process that involves groups of cells working together in a basic mul-
ticellular unit (BMU). Spatial movement inside the BMU is small so models based on 
ordinary differential equations can be used. There are delays present due to the time it 
takes signals to be produced and transmitted and for cells to react to them. Bone remod-
eling is a very complicated process and not all mechanisms are known or completely 
understood. There have been a number of attempts to mathematically formulate bone 
remodeling. It was pioneered by research group led by  Hilal et al. (1964). Other investi-
gators developed theoretical models for adaptive bone remodeling in response to altered 
mechanical loading (Helgason et al. 2008).

The literature provides several models that quantify aspects of bone biology and related 
physiology. Lemaire et al. (2004) published a quantitative cellular model describing the 
linking of osteoclasts and osteoblasts. This model unified several of the controlling and 
linking mechanisms involved in BMU concerted activities building and degrading bone. 
However, this model did not facilitate changes elicited through calcium homeostatic 
mechanisms, nor did it account for the anabolic nature of once-daily PTH administra-
tion. Mathematical models that control intracellular mechanism and described differen-
tial responses to PTH were developed in literature. A detailed overview of such methods 
is provided in Rao et al. (2002), Peterson and Riggs (2010).

Bone dynamics and the Lattice Boltzmann method
The Lattice Boltzmann method which is a numerical technique with intrinsic paral-
lelism, and straightforward resolution of complex solid boundaries and multiple fluid 
phases has gained popularity for its ability to provide results that can be equivalent 
to the solution of the Navier–Stokes equations for single-fluid and multi-fluid flows 
through porous media (Chen and Doolen 1998).

Scaffolds

Special problems arise in the field of multidisciplinary field of tissue engineering 
research. In the case of damaged or lost bone one of the most promising alternative 
approaches to grafting is bone tissue engineering using biodegradable biomimetic scaf-
folds. It is expected to grow cells in a natural way i.e. similar to the process where the 
bone cells grow inside humans under moderate cyclic mechanical loadings.

The Lattice Boltzmann method has been extensively used for the simulation of flow 
conditions in combination with micro-computed tomography imaging to define the 
scaffold micro-architecture in a perfusion bioreactor (Martys and Chen 1996).

The scaffolds provide structural support and serve as a template for osteogenesis of 
newly formed tissue. Such scaffolds can be seeded with bone forming pre-osteoblastic 
mesenchymal stem cells (MSCs) obtained from the patient and cultured in vitro in the 
presence of osteogenic media. Flow-induced shear stress has been found to produce a 
significant stimulatory effect (Sikavitsas et al. 2003).

Recently, Lattice Boltzmann method has been used for the simulation of flow condi-
tions in combination with micro-computed tomography imaging to define the scaffold 
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micro-architecture in perfusion bio-reactor. Media perfusion bio-reactor systems have 
been developed to improve mass transport throughout three-dimensional tissue-engi-
neered constructs cultured in vitro. In addition to enhancing the exchange of nutrients 
and wastes, these systems simultaneously deliver flow-mediated shear stresses to cells 
seeded within the constructs. Local shear stresses are a function of media flow rate 
and dynamic viscosity, bio-reactor configuration, and porous scaffold micro-architec-
ture.  Porter et al. (2005) used the Lattice Boltzmann method to simulate the flow condi-
tions within perfused cell-seeded cylindrical scaffolds.

Perfusion bioreactors are known to exert shear stresses on cultured cells, leading to 
cell differentiation and enhanced extracellular matrix deposition on scaffolds. The influ-
ence of the scaffold’s porous microstructure has recently been investigated by  Zermat-
ten et al. (2014) for a polycaprolactone (PCL) scaffold with a regular micro-architecture 
and a silk fibroin (SF) scaffold with an irregular network of interconnected pores. Mean 
surface shear stresses for scaffolds were calculated with the help of Lattice-Boltzmann 
method.

 Voronov et al. (2011) used LBM and simulated solute transport in porous media using 
the velocity field results. Lagrangian scalar tracking (LST) method was used (to model 
macroscopic solute transport) in conjunction with the LBM algorithm. The fundamental 
hypothesis was that the solute transport behavior of passive markers is the combination 
of convection (obtained using the velocity field from the LBM simulations) and diffusion 
(obtained from a mesoscopic MonteCarlo approach that simulates Brownian motion).

Volume‑based fabric tensors

The laminar and creeping fluid flows (with lower Reynolds number) can be better under-
stood with the help of Lattice Boltzmann method.

Recently Moreno and Smedby (2014) used a novel approach to compute volume-based 
fabric tensors from computational fluid dynamics (CFD) simulations. Their proposed 
method treated a trabecular bone as a pipeline. A synthetic viscous fluid was assumed 
to flow from a single source located at the center of the region of interest, toward the 
boundaries of a spherical region of interest. In a second step the fabric tensors were 
computed and simulated using the Lattice-Boltzmann method.

Pore‑scale analysis

In common practice, the fluid type is usually selected to be Newtonian, due to the com-
plex and anisotropic bone geometry. Zeiser et al. (2008) simulated the flow of a New-
tonian fluid on the pore-scale level of the explicit trabecular bone geometry (acquired 
using a microcomputed tomography technique). The Lattice Boltzmann method 
was used to run the simulations, a fluid was chosen to validate the Lattice Boltzmann 
approach for the particular area of application. It was demonstrated with useful results 
that LBM worked more effectively to simulate the flow in complex porous geometries as 
compared to other CFD approaches.

LBM to demonstrate the canalicular surface dynamics

The research group led by Kamioka calculated the effect of morphology of the canali-
culi on the flow of interstitial fluid around osteocyte cell extensions  (Kamioka et  al. 
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2012). The computational fluid dynamics analysis was made using the lattice Boltzmann 
method.

Mathematical description of the Lattice Boltzman method
The Lattice Boltzmann method (LBM)  (Succi 2001) built on the Boltzmann equa-
tion and historically derived from the Lattice Gas Cellular Automata (LGCA) meth-
ods (Wolf-Gladrow 2000), is an emerging alternative to the Navier–Stokes (NS) based 
methods for the simulation of fluid flows. The motivations for its use are both theo-
retical and practical. On the one hand, the LBM provides a novel perspective on com-
plex physical systems based on the averaged microscopic properties of fluids. It makes 
possible the expression of a wide range of macroscopic flows which are ultimately rep-
resentative of similar molecular states. With its meso-scopic definition through the lat-
tice Bhatnagar–Gross–Krook (BGK) model it also shows exact conservation properties 
(Bhatnagar 1954; Chen et al. 1991). On the other hand, despite its microscopic founda-
tion, the method is easy to implement, flexible towards additional physics, and advanta-
geous for parallelization.

The LBM is a recent method from CFD which has its roots in a highly simplified gas-
kinetic description, i.e. a velocity-discrete Boltzmann equation with appropriate collision 
term. When properly applied, the results of LBM simulations satisfy the Navier–Stokes 
equations in the macroscopic limit with second order of accuracy  (Chen and Doolen 
1998; Succi 2001).

In  “Introduction” section the forms of the fluid contained inside the bone are 
described. The interstitial fluid is the stage of fluid when it is contained by the pores or 
spaces of the solid milieu. Generally, the dynamics at such scales can be classified by 
three types of mathematical models according to the observed scales:

1.	 Microscopic models at molecular scale.
2.	 Kinetic theories at mesoscopic scale.
3.	 Continuum models at macroscopic scale.

Microscopic models at molecular dynamics

In microscopic models, position and momentum of molecules can be obtained by track-
ing the motion of each molecule. Usually, Newton second law is used to decribe the 
molecular dynamics of the fluid i.e.

where m is the mass of the fluid molecule ai is the rate of change of velocity vector of 
molecule i, and Fi is the total force and includes two parts

where fi is the force exerted by the fluid molecule and Gi is te external force such as grav-
ity and electromagnetic force.

From the above equation, the location and velocity of each molecule at every time 
can be obtained, and then fluid density, velocity, and temperature, can be obtained from 
the microscopic results. In Newtonian formulation, the number of molecules is so large 

(1)mai = Fi,

(2)Fi = fi +Gi,
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(∼1023) for a small volume of fluid in practice that it is practically impossible to describe 
the whole system with the most advanced computational techniques.

Mesoscopic model for kinetic theory

Mesoscopic kinetic theory is used to describe the particle distribution in compressible 
fluid (gas), whereas in principal kinetic theory can also be used to simulate the incom-
pressible fluid. The basic quantity in kinetic theory is the PDF (particle distribution func-
tion) f (s, vm, t). It is the generalization of density ρ that also consider the microscopic 
particle velocity. The ρ(s, t) is used as the density of mass in physical space while in 
three-dimensional physical space and velocity space PDF f (s, vm, t) is used as the density 
of mass. The pdf (particle distribution function) f (s, vm, t) is also related to macroscopic 
variables like the density and the fluid velocity vf  from its moments. These moments are 
integrals of f (s, vm, t), weighted with some function of vm, over the entire velocity space. 
For instance, the macroscopic mass density can be found as the moment

By integrating over molecular velocity space in this way, we are considering the contri-
bution to the density of particles of all possible velocities at position s and time t.

We can also consider the particles’ contribution vm f (s, vm, t) to the momentum den-
sity. Again considering all possible velocities, we find the macroscopic momentum den-
sity as the moment

Similarly, we can find the macroscopic total energy density as the moment

where fluid and molecular velocities can be realted with each other by the reative 
velocity

It is also considered the pdf f (s, vm, t) attains the equilibrium distribution f eq(s, vm, t) , 
when a gas has been lisolated for sufficiently long time, which is isotropic in velocity 
space around vm = vf  in a moving frame. Assume that the equilibrium distribution 
f eq(s, |vrel |, t) is separable therefore,

Above equation shows that the product of three 1D equilibrium distribution is equiva-
lent to 3D equilibrium distribution. If the magnitude of the velocity is constant then

implies that

(3)ρ(s, t) =

∫

f (s, vm, t)d
3vm.

(4)ρ(s, t)vf =

∫

vmf (s, vm, t)d
3vm.

(5)ρ(s, t)e(s, t) =

∫

|vm|
2f (s, vm, t)d

3vm,

(6)vrel = vm − vf

(7)f eq(s, |vrel |
2, t) = f eq(v21 + v22 + v23) = f

eq
1D(v

2
1)f

eq
1D(v

2
1)f

eq
1D(v

2
1).

(8)f eq(s, |vrel |
2, t) = const,

(9)ln f eq(v21)+ ln f eq(v22)+ ln f eq(v23) = const
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Above expression will be true if each 1D equilibrium distribution satisfy the following 
expression

which can be written as

and 3D equilibrium distribution can be written as

where a and b are constants.
Therefore the equilibrium distribution which is not unique known as the Maxwell 

Boltzmann distribution can be obtained as

Algorithm of LBM

Discretization

Assume that each population 
(

fi
)

 moves with velocity ci from one lattice site to other in 
time �t if lattice site is uniform and regular with lattice constant �s and velocity compo-
nents are

The population of particles at the lattice site s is fi(s, ci, t) and at the lattice site s + ci�t 
is fi(s + ci�t, t +�t).

Reduction by method of trajectories

From the LBE, the population of particles fi = fi(s, ci, t) satisfies the following equation

∇ = ∂
∂gα

 , α is space variable, where �i (collision operator) depends upon discretized 
population of particles fi and equilibrium population of particles f eqi  which depends 
on the macroscopic quantities like density and velocity that are already derived through 
momentums of distribution function (population of particles) fi.

The associated homogeneous equation of Eq. (14) is

which is a hyperbolic equation and have trajectories s = s0 + vt or s0 = s − vt where, s0 
is arbitrary and h = h(s − vt) is the solution of Eq. (15).

(10)ln f eq(v21) = a+ bv21

(11)ln f eq(v21)+ ln f eq(v22)+ ln f eq(v23) = 3a+ b
(

v21 + v22 + v23

)

= const

(12)f eq(|vrel |) = e3aeb|vrel |
2

(13)f eq(s, |vrel |, t) =

(

3

4πe

)3/2

ρ exp(−3|vrel |
2/4e)

ciα = n
�s

�t
.

(14)
∂fi

∂t
+ (ciα .∇)fi = �i

(15)
∂h

∂t
+ �v.∇h = 0, h = fi, v = ciα
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In the trajectory method we can write the solution of fi = fi(s(ξ), t(ξ)), where, ξ is the 
trajectory parameter, the left hand side of ∗ can be written as a total derivative of trajec-
tory parameter ξ i.e. ξ = t, sα = ciαξ.

thus

Choosing the initial point (s0, t0) i.e. ξ = 0

we can now integrate on [0,�t]

Since, (s0, t0) is the arbitrary point, therefore

Space–time integration method

To approximate the RHS of Eq. (21), RK and Crank Nicolson schemes can be used to 
integrate the collision operation via rectangular cube. The first order discretization 
approximate the collision operator integral by following expression:

or

Equation (23) is called is called the Lattice Boltzman Equation (LBE) and is used for LB 
simulations, it can’t be solved unless the collision operator �i(s, t) is defined. For this 
purpose, we use collision operator that is widely used for LBE.

BGK collision operator

To approximate the collision operator �i defined �i in terms of known variable i.e. dis-
tribution function fi (population of particles) and equilibrium distribution function f eqi  
(population of particles at equilibrium condition).

(16)
dfi

dξ
=

∂fi

∂t

∂t

∂ξ
+

∂fi

∂sα

dsα

dξ
= �i(s(ξ), t(ξ))

(17)
dfi

dξ
=

∂fi

∂t
+ ciα

∂fi

∂sα

(18)
dfi

dξ
= �i(s(ξ), t(ξ))

(19)
∫ �t

0

dfi

dξ
dξ =

∫ �t

0

�i(s(ξ), t(ξ))dξ

(20)fi(s0 + ci�t, t0 +�t)− fi(s0, t0) =

∫ �t

0

�i(s0 + ciξ , t0 + ξ)dξ .

(21)fi(s + ci�t, t +�t)− fi(s, t) =

∫ �t

0

�i(s + ciξ , t + ξ)dξ

(22)fi(s + ci�t, t +�t)− fi(s, t) = �t�i(s, t)

(23)fi(s + ci�t, t +�t) = fi(s, t)+�t�i(s, t)
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Assume that �i ∝ fi − f
eq
i

�ici ∝ fici − f
eq
i ci

∑

i �ici ∝
∑

i

(

fici − f
eq
i ci

)

The Navier–Stokes behavior requires that mass and momentum is conserved, therefore

from the BGK collision operator, we obtain

which shows that trend of population of particle fi to equilibrium population of f eqi  in 
time �, which is also called the relaxation time. Thus the lattice Boltzmann equation with 
BGK collision operator is given by the expression.

or

In the literature Wang et al. (2016), Hübner (2010) it has been verified the LB with BGK 
operator can reproduce the NSE and continuity equation.

Lattice Boltzmann computational designs

Different models and designs exist in the literature for ‘X’ dimensions and ‘Y’ discrete 
velocities of the Lattice Boltzmann method. Such models are characterized as DXQY 
models. A list of some commonly used models is provided in Table 1. The basic flow chat 
for the algorithm is presented in Fig. 1. It is obvious from these steps that a complete 
description is desired of the technique for the biological problems in general and for the 
bone remodelling and other applications in the field of osteology, in particular. We have 
explained in detail the analytic and numerical approaches for the Lattice Boltzmann 
method in second part of this article.

Conclusions
In this article, we have outlined the deep mechanism of a continually bone renewal prac-
tice, called bone remodeling. The mathematical models of bone remodeling present 
in literature, concentrate on different aspects. Some approaches were concerned with 
bone mechanics and its effects on bone formation and resorption, while other modelling 
efforts were based on the signaling pathways among bone forming and resorbing cells or 
described the behavior of both cells in a microenvironment section called a basic multi-
cellular unit (BMU). A few efforts on mathematical modeling of bone remodeling have 
been discussed in “Bone” section.
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Lately, Lattice Boltzmann method (LBM) has been considered for the simulation of 
flow conditions in combination with micro-computed tomography imaging to describe 
the scaffold micro-architecture in perfusion bio-reactor. Media perfusion bio-reactor 
systems have been developed to improve mass transport throughout three-dimensional 
tissue-engineered constructs cultured in vitro. In addition to enhancing the exchange of 
nutrients and wastes, these systems simultaneously deliver flow-mediated shear stresses 
to cells seeded within the constructs. Local shear stresses are a function of media flow 
rate and dynamic viscosity, bio-reactor configuration, and porous scaffold micro-archi-
tecture. The benefit of the Lattice Boltzmann is that it can be coded for parallel machines 
and GPUs directly. Thus, executions for treating with complex hyperbolic PDEs, like the 
Navier–Stokes PDE, can be found proficiently. This work will help the reader to apply 
the most appropriate multiscale modelling strategy and will help to understand the deep 
mechanism of bone remodeling, since the study is complex and this study will help to 

Fig. 1  Flow chart for Lattice Boltzmann method

Table 1  LBM models and their respective  application

Model References

D2Q7 Zhang et al. (2004) To study solid–fluid interactions and free energy for fluid 
systems

D2Q9 Wang et al. (2007) Thermal conductivity for microscale random porous 
media

D3Q15 Yan and Zu (2007) To study two-phase flows on partial wetting surface

D3Q19 Pintelon et al. (2012), Contreras (2013) The effect of biofilm permeability on bio-clogging of 
porous media lid-driven cavity

D3Q27 Boulianne et al. (2008), Kamioka et al. (2012) Microscale fluid flow analysis in a human osteocyte cana-
liculus particle-based biological system simulator
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model the the influence of the microscopic features such as the surface roughness of the 
canalicular wall on the profiles of mechanical loading-induced flow of interstitial fluid. 
In future, we will provide some useful numerical tools to run such simulations.
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