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Introduction
Air traffic control system studied in this paper is a complex adaptive socio-technical system 
that controls the traffic of all aircrafts in the airport’s radar range. The complexity of this sys-
tem arises due to the number of elements and factors intervene in it such as aircrafts, con-
trollers, runways, taxiways, weather, etc. This complexity makes the system unpredictable 
which require a real time management and adaptation of a dynamic state. The dynamic state 
means that during system building we cannot know which aircrafts will enter the airport nei-
ther their arrival nor departure time. All these facts makes developing air traffic control sys-
tem a significant and challenging task in the context of air traffic management.

We describe this complex adaptive socio-technical system using a model based on 
a complex network. This kind of complex network is often represented using a graph 
where nodes represent aircrafts (agents) and edges represent the exchange of data over 
the network. In a complex network we define strategies describing the behaviour of air-
crafts in all situations. These strategies should be carefully defined to maintain the stabil-
ity of the system and avoid any mistake that could leat to a disaster. This high risk can be 
avoided by using sophisticated techniques such as formal methods during system design.

Formal methods are mathematically based techniques for specifying and verifying 
systems. Use of those methods can greatly increase our understanding of a system by 
revealing inconsistencies, ambiguities, and incompleteness that might otherwise go 
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undetected (Clarke and Wing 1996). The formal method used in this paper is Event-B, 
which is based on set theory as a modeling notation. One of the key features of Event-
B is the use of refinement to represent systems at different abstraction levels in addi-
tion to the use of mathematical proofs to verify consistency between refinement levels 
(Abrial et al. 2010; Hoang et al. 2009). This method has been successfully applied to the 
industry of transportation such as Meteor line 14 driverless metro in Paris where no 
bugs were detected after the proofs, neither at the functional validation (October 1998). 
This success encourages Alstom and Siemens Transportation Systems to have a product 
based strategy and reuse as much as possible existing B models to develop future metros 
(Lecomte et al. 2007). Therefore, we also used Event-B to develop a standard air traffic 
control system model.

In this paper, we develop a formal model of air traffic control system in order to help 
engineers develop alike system. In particular, we focus on developing a standard model 
that plays the role of a starting model in the process of developing any air traffic con-
trol system. This model includes the essence of air traffic management and the essential 
safety requirements; after that, engineers enrich it by adding more details and require-
ments depending on the case studied.

Our main contribution is a standard air traffic control system model recommended to 
be used as a starting model for system development due to its correctness. Being correct 
means that it verifies all proofs obligations which ensure the absence of contradictions 
within the elements of the model. It is also proved that it maintains all requirements of 
the system verified by means of invariant preservation proofs. Therefore, a system con-
structed based on this model will be indeed correct by construct. This model is very 
abstract and based on several organizations’ standards and recommendations (Inter-
national Civil Aviation Organization ICAO, Federal Aviation Administration FAA, and 
National Aeronautics and Space Administration NASA) which ensure its applicability in 
most airports in the world. Furthermore, the essence of air traffic management require-
ments are included in order to allow engineers to focus on other typical requirements 
which will be very useful to ensure the efficiency of developing air traffic control systems.

The rest of the paper is structured as follows. “Background and literature review” sec-
tion gives some background on related works, Air Traffic Control, and the used method. 
In “Requirements document” section, we presents the set of requirements considered 
in this paper. The main content of the paper is “Formal development” section describ-
ing our approach to develop the air traffic control system along three models. The first 
one includes the essence of air traffic management. The second presents how the system 
schedules taking off and landing of aircrafts. The last model introduces the non-func-
tional requirements. “Proving model correctness and result” section presents proof sta-
tistics that are generated by Rodin platform. “Conclusion” section concludes the paper.

Background and literature review
Related works

One of the works that uses formal verification to model ATC is presented by Yang et al. 
(2017). In this work, Yang presents a functional resonance to provide a better under-
standing of why or how the emergent phenomena appear and develop. For this purpose, 
they used a formal verification tool SPIN along the paradigm of Functional Resonance 
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Analysis Method (FRAM). This work contributes to the realization that the hazards 
caused by functional resonance can be identified, with detailed manifestations about the 
way that the coincidence of functional variability occurs and ultimately leads to an acci-
dent, as well as effective safety measures to damp the resonance. Although the use of the 
SPIN tool as a model checker is liked by a lot of people because it is exhaustive auto-
mated testing, model checker works well for systems with a finite number of states that 
are predictable and this is not the case here (the location of a aircraft in the radar area 
have infinite possibilities). On the other hand, our method is based on theorem proving 
which is harder to use but it provides a complete verification of theorems either the sys-
tem has a finite or infinite states, which works perfectly in our case.

Similar to the last approach, the Zafar (2016) authors combine a VDM-SL and graph 
theory to build a formal specification of aircrafts take-off’s procedure. This formal speci-
fication of graph-based model, taxiways, aircrafts, runways and controllers is provided 
in the static part of the model. The state space analysis describing take-off algorithms is 
provided by defining optimal paths and possible operations in a dynamic model expedit-
ing the departure procedure. The model is developed by a series of refinements following 
the stepwise development approach. Although this work presents a detailed specification 
of the departure procedure, but it requires further investigation to real-time manage-
ment that is a major factor in this procedure. On the other hand, Dominique and Neeraj 
(2014) introduces a formal model of an aircraft landing system. This work considered as 
a benchmark for techniques and tools dedicated to the verification of behavioral prop-
erties of the landing system. However, it neglects the procedure of landing which must 
be taken into consideration to ensure system safety and focus more on the mechanical 
system.

The most important work in this area is The UK National Air Traffic Services’ iFACTS 
system (2017). This is also a system developed using the correctness-by-construction 
paradigm. The system was developed from a formal specification in Z using the SPARK 
technology. It has been in daily use for some years, managing UK airspace, and it has 
operated without error. The method used in this paper is a developed version of the Z 
specification language which provides more possibilities.

In this work, we aim to present a formal modeling and verification of an ATC system 
considering aircrafts departure and landing side by side. This model ensures the con-
sistency between the two procedures, however, we see that formalizing taking off and 
landing separately ignore the fact that these operations occur at the same airport and 
share the resources (runways, airport airspace, etc.). Therefore, they must be modeled 
together.

Overview of the air traffic control system

Air Traffic control is a service provided by controllers located in a control tower. These 
controllers are responsible for the safety of air traffic in the vicinity of airport; they 
should organize and expedite the flow of air traffic, prevent collisions, and provide infor-
mation and other support for pilots (Fact Sheet-FAA & NTSB’s “Most Wanted” Rec-
ommendations 2010). The system developed in this paper aims at assisting air traffic 
controllers fulfilling their responsibilities.
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To organize and expedite the flow of air traffic, controllers assign landing and taking 
off clearances according to the first-come-first-served (FCFS) approach. This approach 
gives a useable scheme for scheduling, however, it does not maximize the profit of the 
runway. Therefore, we propose our own approach for organizing air traffic flow (see 
refinement 1 as Graphical abstract, Online).

In order to prevent collisions, air traffic controllers are responsible for enforcing a 
minimum separation distance between aircrafts. By so doing they avoid wake turbulence 
which may cause an aircraft to lose its aerodynamic stability. Furthermore, a minimum 
separation time should also be enforced to avoid air turbulence mostly during landing 
and taking off (Yu and Bin 2011; In Focus: ICAO’S Strategic Objectives 2018) (see refine-
ment 2 as Fig. 1).

Modeling and refinement in Event‑B

Due to the high risk in safety–critical systems, it is highly recommended to base their 
engineering on a certain theory. For example, electrical engineering is based on Max-
well’s equations and Kirchhoff’s laws; civil engineering is based on geometry and theory 
of material’s strength. Similarly, software engineering has formal methods which are less 
considered. Therefore, there are engineers who do not know any theory building soft-
ware, and the software often has bugs that may cost millions to fix. Now, formal meth-
ods can be used for verifying and specifying software in order to highly guarantee bugs’ 
absence.

Event-B is a formal method that provides the correct-by-construct approach and for-
mal verification by theorem proving (Vistbakka and Troubitsyna 2018; Abrial 2010). 
Models in Event-B are presented based on abstract state machine notion, which presents 
the model states in term of a set of variables; these states are constrained by invariants. 
Invariants are the necessary properties that must be preserved during system func-
tion. Statuses transitions are described by events, which are a set of actions. Each action 

Fig. 1  Process of development in Event-B (Jarrar and Balouki 2018)
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changes the value of certain variable. Events may have some necessary conditions to be 
triggered; these conditions are called guards. Models in Event-B include sets, constants 
and axioms representing the static part of the model.

One of the main features of Event-B is refinement, which means starting modeling 
with an abstract model and then enriches it in successive steps by adding more details. 
This techniques makes modeling easier than trying to model the whole system at once, 
we focus on a limited number of requirement in each step under the condition of clev-
erly choose the refinement strategy. Figure 1 presents an outline of the process of mod-
eling in Event-B.

Event-B models consistency, invariant preservation and the correctness refinement—
refinements should not contradict—are ensured by discharging a number of verification 
conditions called proof obligations. For example, to prove that an invariant is preserved 
by an event, we prove that if an invariant is preserved before the event it will remain 
preserved after it. Mathematically speaking, let I be the model invariant, A are axioms, 
c are constants, s are set, v are variables before the event occurrence and v′ are variables 
after the event. The following logical formula should be proved in order to prove invari-
ant preservation:

Most of proof obligations are discharged automatically by means of a platform called 
Rodin. The remaining proofs may be dealt using an interactive prover included in Rodin.

Code generation from Event‑B to Java

Although developing a system using formal method reveals future failure and improves 
security, it is highly desirable to be able to translate this modeling to a code. Most of 
works in this sense such as (Méry 2011) presented a method for generating code Java 
based on Event-B model. Dominique (2011) develop EB2J, a software tool that translates 
Event-B models into Java code. This tool is developed as plugin using the Eclipse devel-
opment framework, the input of the code generation tool is a Rodin project file that con-
tains Event-B formal specifications.

The choice of Java is justified by its several benefits; it is robust, reliable, and portable, 
has a runtime error checking and automatic memory management. The OO-paradigm 
also forms the basis for software component industry with their need for certification 
technique. Furthermore, Java is widely used for distributed and network programming, 
and the potential for reuse in OO-programming carries over to reusing specifications 
and proofs (Dominique 2011).

Figure 2 illustrates the EB2J architecture.
The generation code approach is based on 4 components:

• • Pre-processing: basing on Rodin project, the pre-processing introduces a java con-
text file. Using this context file additional proof obligations are generated, and then 
the context and concrete machine files are filtered.

• • Event-B to Java translator: this translator is using syntax-directed translation to gen-
erate Java code from the context and concrete machine files. The generated Java file 
contains formal code in term of constants, variables, arrays, functions, and event; 

(1)A(c, s) ∧ I(v, c, s)⊢I ′
(

v′, c, s
)
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the generation approach is based on generating code from the Event-B specification 
using lexical and syntactic analysis.

• • Code optimization: in this phase, the Java functions translated from Event-B events 
are synthesized.

• • Code verification: the code verification step is used to verify the automated gener-
ated code in order to ensure that it satisfies the Event-B model.

The process of these successive steps allows the generation of a proof-based Java code 
from Event-B specification.

For our approach, EB2J is used as the last step in the process of development. The model 
developed in this paper is refined by engineers in order to add their typical requirements. 
The resulting model is developed as a Rodin project that is translated to proof-based Java 
program.

Fig. 2  The EB2J tool architecture (Méry 2011)
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Requirements document
As we are modelling formally a system, it is recommended to present requirements 
in a more formal way instead of a simple informal paragraph. We propose presenting 
the requirement document along 3 axes labelled and numbered: the first is “FUN” that 
stands for the specific task/functional requirements of the system; the second is “ENV” 
which deals with the concerning environment and assumptions as for equipment situ-
ated around our intended system; the last is labelled “SAF” that deals with the safety 
requirements that have to be guaranteed by the system.

The requirement document, mainly based on FAA, ICAO and NASA recommenda-
tions, is presented as follows:

The airport is equipped with at least one runway ENV-1

The runway is used for landing and taking-off aircrafts FUN-1

Runways are equipped with lights indicating their status; these lights are called RunWays Status Lights 
RWSL

ENV-2

These lights are embedded in the pavement of runways and taxiways and turn red when it is not safe to 
enter for a certain reason (Fact Sheet-FAA & NTSB’s “Most Wanted” Recommendations (2010); Depart-
ment of transportation federal aviation administration 2017; John 2016)

FUN-2

The airport is equipped with at least radar ENV-3

For each aircraft in the radar range, a significant status is associated which is proposed and introduced 
to help controllers for distinguishing between aircrafts landing, taking off, entering airport, waiting for 
landing clearance, etc. (NASA Air Traffic Management Demonstration Goes Live in Charlotte 2017)

FUN-3

In order to ensure the traffic safety in the runway, the status lights are turned ON whenever the runway 
is unavailable

SAF-1

At the beginning, the runway is available, runway lights are off, there are not aircrafts in the airport, and 
no aircraft status is assigned

ENV-4

In order for an aircraft to get landing clearance, the runway must be currently available and the runway 
lights must be OFF

SAF-2

The take-off clearance requires also that the runway is available and the runway lights are off SAF-3

The runway is allocated and RWSL are turned red whenever an aircraft is taking-off or landing SAF-4

A deadline is associated to each aircraft entering the airport ENV-5

The scheduling method used for aircrafts taking off is First-Come-First-Served FUN-4

The proposed method for landing is based on real-time scheduling algorithm, which is Deadline Mono-
tonic (DM) (Jarrar et al. 2017). This choice is very important in order to optimize deadlines respecting 
as much as possible

FUN-5

The system is able to predict if it is possible to maintain deadlines respected or not, therefore a notifica-
tion feature can be included

SAF-5

The system assigns the highest landing priority to aircrafts with emergency situations such as medical 
and terroristic threats

SAF-6

An alert system is presented to provide more security for the ATC. SAF-7

The alert system controls the movement of all aircrafts in the radar range and notifies the controller as 
soon as something is going wrong

SAF-8

A minimum separation distance should be maintained in order to avoid collisions and wake turbulence SAF-9

A separation time should be kept between landing and taking off of aircrafts to avoid wake turbulence SAF-10

Formal development
Our approach is based on complex network paradigm where aircrafts represent agents, 
and edges represent the exchange of data between aircrafts. This exchange of data occurs 
through controllers using the proposed control system. We also define the strategy that 
indicates what to do in which circumstance for each aircraft. Figure 3 emphasizes the 
approach of seeing the air traffic control system as a complex network.
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Bussniss rules and requirements modeled in this paper are proposed by the follow-
ing organizations:

• • ICAO (2018) which provides strategic objectives concerning safety, capacity and 
efficiency, security and facilitation, economic development, and environmental 
protection;

• • FAA (2010), Department of transportation federal aviation administration 
(2017), John (2016) which has a predetermined number of air traffic manuals, 
publications, and orders;

• • NASA (2017) standards and recommendations considered as the main con-
straints in this modeling in order to provide a system with maximum feasibility.

This development is designed progressively by starting with an abstract model that 
captures the essence of traffic management and integrating more details in succes-
sive steps. This activity is called refinement technique. The first refinement intro-
duces the scheduling method used during taking off and landing. The previously 
mentioned scheduling method assigns priority of taking off using FCFS (first comes 
first served) and the priority for landing based on deadline monotonic. Moreover, 
this complex system is able to adapt in case of emergency situations.

The proposed model is based on one runway. However, this model maximizes the 
use of one runway to land and takeoff aircrafts while maintaining deadlines as much 
as possible (Lygeros and Lynch 1829).

The second refinement introduces safety properties which strongly avoid issues 
that may cause serious disasters. For example, a minimum separation landing time 
must be respected in order to maintain aircrafts aerodynamic stability (Pinol and 
Beasley 2006).

Fig. 3  Complex network
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Initial model: an abstract model of the landing process

In this initial model, we consider the following requirements: ENV-1, ENV-2, ENV-3, 
ENV-4, FUN-1, FUN-2, FUN-3, SAF-1, SAF-2, SAF-3, and SAF-4 (see “Requirements 
document” section).

We introduce the essence of the ATC system and the different components taken into 
consideration (Tomlin et al. 1998). The first component is the runway which is, accord-
ing to the International Civil Aviation Organization ICAO, a rectangular area on a land 
aerodrome prepared for the landing and takeoff of aircrafts (In Focus: ICAO’S Strate-
gic Objectives 2018). Runways are equipped with lights indicating their status; these 
lights are called RunWays Status Lights RWSL. The RWSL system was developed by the 
Federal Aviation Administration FAA to improve air crew and vehicle operator situa-
tional awareness. These lights are embedded in the pavement of runways and taxiways 
and turn red when it is not safe to enter for a certain reason (Fact Sheet-FAA & NTSB’s 
“Most Wanted” Recommendations 2010; Department of transportation federal aviation 
administration 2017; John 2016).

This paper develops a system for ATC to manage aircrafts traffic in the vicinity of the 
airport airspace. Hence, it focuses only on status lights modelization of the runway due 
to their relation to the airspace traffic management (Pinol and Beasley 2006).

The first proposed model is made up of two parts: static part and dynamic one (Abrial 
2010). The static part is called context and contains carrier sets, constants and associated 
axioms, whereas the dynamic part (called machine) contains variables, invariants and 
events. In the first context, we introduce of the carrier set RW_STATUSES correspond-
ing to the possible statuses of the runway {available, unavailable} (axm1), as for RWL_
STATUSES represents runway lights statuses {ON, OFF} (axm2). The AIRCRAFTS 
set denots all possible aircrafts that might exist (currently or in the past or even in the 
future) which is axiomatized to be finite (axm3).

For each aircraft in the radar range, a significant status is associated which is proposed 
and introduced to help controllers for distinguishing between aircrafts landing, taking 
off, entering airport, waiting for landing clearance, etc. (NASA Air Traffic Management 
Demonstration Goes Live in Charlotte 2017). When an aircraft enter the airport vicinity, 
the status blocked is assigned to it. If the aircraft intend to land, it fly toward the VOR 
area (very high frequency omni directional radio range) to be qualified to get landing 
clearance. At this stage, the system assigns to the aircrafts readyL status, which means 
that it is ready for landing. After getting landing clearance, it is assigned to landing state 
until finishing landing and passengers’ departure; and then it is considered in Terminat-
edL status. Likewise, an aircraft in the runway, after passengers’ arrival, is considered 
ready to takeoff and being assigned to readyT status. Immediately upon takeoff clear-
ance confirmation, it is considered in taking off status. Finally, the aircraft leaves out the 
VOR and return to blocked status until getting out of the airport radar range (Yu and 
Bin 2011; Su and Abrial 2017; NASA Air Traffic Management Demonstration Goes Live 
in Charlotte 2017). These statuses are expressed as the elements of a carrier set called 
STATUSES (axm5). Figure 4 illustrates this process and the different statuses (Luo and 
Yu 1998):

To summarize, the first context is made up of four sets (RW_STATUSES, RWL_STA-
TUSES, AIRCRAFTS, and STATUSES), ten constants (Available, Unavailable, ON, 
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OFF, Blocked, ReadyL, Landing, TerminatedL, ReadyT, and TakingOff), and five axioms 
(axm1, axm2, axm3, and axm4). This is expressed as shown in the following box:

 

SETS 

RW_STATUSES, RWL_STATUSES, AIRCRAFTS, STATUSES  

CONSTANTS 

Available, Unavailable, ON, OFF, Blocked, ReadyL, Landing, TerminatedL, ReadyT, TakingOff  

AXIOMS 

axm1   :    partition(RW_STATUSES,{available},{unavailable})  

axm2   :    partition(RWL_STATUSES,{ON},{OFF})  

axm3   :    �inite(AIRCRAFTS)  

axm4   :  partition(STATUSES, {Blocked}, {ReadyL}, {Landing}, {TerminatedL}, {ReadyT}, {TakingOff})  

The partition predicate is an easy way to enumerate sets. Mathematically, the partition 
predicate is defined as follows:

 where x and y are two subsets of a set S.
In the dynamic part (machine), we introduce two variables curr_RW_status and 

curr_RWL_status denoting respectively the current statuses of the runway and runway 
lights (whereas, RW_STATUS and RWL_STATUS represent all the possible statuses). 
These two variables are defined by means of two invariants inv1 and inv2. Inv1 defines 
curr_RW_status as an element of the RW_STATUS, which means that curr_RW_sta-
tus may equal available or unavailable. Likewise, curr_RWL_status is an element of 
RWL_STATUS.

In order to ensure the traffic safety in the runway, the status lights are turned ON 
whenever the runway is unavailable. However, taxiways intersect the runway at many 
points and therefore vehicles must be aware of the runway usage. These lights help 
to determine when it is not safe to proceed into or across the runway. Although, The 

partition
(

S, x, y
)

⇔ x ∪ y = S ∧ x ∩ y = ∅

Fig. 4  Aircrafts landing/taking off statuses
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FAA confirm that the RWSL does not act as a substitution of the ATC clearance, which 
means that vehicles should not enter the runway without a controller clearance even if 
the RWSL have gone out (In Focus: ICAO’S Strategic Objectives 2018; Fact Sheet-FAA 
& NTSB’s “Most Wanted” Recommendations 2010; Department of transportation fed-
eral aviation administration 2017; John 2016; NASA Air Traffic Management Demon-
stration Goes Live in Charlotte 2017). Formally, this is modeled by means of implication 
between the RWST and runway status (inv3). The proposed approach introduces also 
a subset of AIRCRAFTS called aircrafts_in_airport denoting the set of aircrafts in the 
airport (inv4).

As mentioned before, the system associates to each aircraft in the radar range a signifi-
cant status. Therefore, the introduction of a variable statusof associating to each aircraft 
its status formalized as a total function from aircrafts_in_airport to the set AIRCRAFTS 
(inv5). The definition of the variables and the invariants of the initial model as follows:

VARIABLES:

curr_RW_status, curr_RWL_status, aircrafts_in_airport, statusof

INVARIANTS:

inv1   :    curr_RW_status ∈ RW_STATUS 

inv2   :    curr_RWL_status ∈ RWL_STATUS 

inv3   :   curr_RW_status=unavailable ⇒ curr_RWL_status=ON

inv4   :    aircrafts_in_airport ⊆ AIRCRAFTS 

inv5   :    statusof ∈ aircrafts_in_airport→ STATUSES   

After defining all variables and invariants of the first machine, we present the different 
machine statuses transactions described by events. Firstly, we have to define what hap-
pens at the beginning. For this purpose, the proposed approach defines the INITIALI-
SATION event that corresponds to the initial statuses of the system. It assumes initially 
that the runway is available, runway lights are off, there are no aircrafts in the airport, 
and no aircraft status is assigned. In addition, the initialization event should not have 
any guard, since that the initialization must always be possible. This event is formalized 
as follows: 

INITIALISATION  

BEGIN

act1   :    curr_RW_status≔available 

act2   :    curr_RWL_status≔OFF 

act3   :    aircrafts_in_airport ≔ ∅

act4   :    statusof ≔ ∅

END

Beside the initialization event, eight more events are introduced: Entering_Radar_
Range, Entering_VOR, Start_Landing, Terminating_Landing, Takeoff_Preparing, 
Start_takingoff, Terminating_takingoff, and Airport_Departing. The Entering_Radar_
Range trigger when an aircraft enter the range of the airport radar range. An entering 
aircraft must be added to the set of aircrafts in the airport (aircrafts_in_airport) and 
assigned to the Blocked status. However, during carrying out the proof obligation for 
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different events, it is discovered that some guards are needed in each event. For the 
Entering_Radar_Range event, two guards are needed to be added: the first ensures that 
the entering aircraft is effectively a well-defined aircraft and known by the system. The 
second guard guarantees that it is not an element of the aircrafts_in_airport set. Simi-
larly, the Entering_VOR is the event associated to an aircraft entering the VOR. This 
event assigns to an aircraft the status Ready under the condition that it is an element 
of the aircrafts_in_airport set, and it was in Blocked status. Moreover, the Start_Land-
ing event trigger whenever an aircraft get landing clearance. To get that clearance, 
it must have been in the VOR (which means in Ready status) and an element of the 
aircrafts_in_airport. Furthermore, the runway must be currently available and the 
runway lights must be OFF. After the aircraft landing and passengers’ departure, the 
Terminating_Landing event triggers indicating the end of landing process by assigning 
the aircraft to the status TerminatedL. Therefore, freeing the runway and turning run-
way’s lights off (In Focus: ICAO’S Strategic Objectives 2018; Fact Sheet-FAA & NTSB’s 
“Most Wanted” Recommendations 2010; Department of transportation federal avia-
tion administration 2017; John 2016; NASA Air Traffic Management Demonstration 
Goes Live in Charlotte 2017).

The Takeoff_Preparing event trigger when an aircraft is ready to take off. This means 
that the aircraft previously finished its landing (it is in TerminatedL status). This event 
assigns to the aircraft the status ReadyL. After finishing take off preparation, the air-
craft get take off clearance (Fact Sheet-FAA & NTSB’s “Most Wanted” Recommen-
dations 2010). The event triggered at this stage is Start_takingoff; this event allocate 
the runway for the aircraft and turn lights on under the condition that the runway is 
not reserved by another aircraft (In Focus: ICAO’S Strategic Objectives 2018). After-
ward, the aircraft terminates taking off and leaves the VOR to return to the first status 
Blocked. The event corresponds to this is Terminating_takingoff; this event has two 
guards: the first ensures that the aircraft is an element of the aircrafts_in_airport set, 
and the second is that it is in Takingoff status (Department of transportation federal 
aviation administration 2017; NASA Air Traffic Management Demonstration Goes 
Live in Charlotte 2017). Ultimately, the Airport_Departing event triggers indicating 
that the aircraft is leaving the radar range, thus removing it from aircrafts_in_airport. 
Moreover, the position of the aircraft is deleted by removing it from the total function 
status of. The proposed approach formalize the events of the initial model in the fol-
lowing boxes:
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Airport_Departing 

ANY

aircraft 

WHERE

grd1   :    aircraft ∈ aircrafts_in_airport 

grd2   :    statusof(aircraft) = Blocked 

THEN

act1 :aircrafts_in_airport ≔

aircrafts_in_airport ∖ {aircraft} 

act2   :    statusof ≔ {aircraft} ⩤ statusof

END

Terminating_takingoff   

ANY

aircraft 

WHERE

grd1   :    aircraft ∈ aircrafts_in_airport 

grd2   :    statusof(aircraft) = TakingOff 

THEN

act1   :    statusof(aircraft) ≔ Blocked 

act2   :    curr_RW_status ≔ available 

act3   :    curr_RWL_status ≔ OFF 

END

Start_takingoff 

ANY

aircraft 

WHERE

grd1   :    aircraft ∈ aircrafts_in_airport 

grd2   :    statusof(aircraft) = ReadyT 

grd3   :    curr_RW_status = available 

grd4   :    curr_RWL_status = OFF 

THEN

act1   :    statusof(aircraft) ≔ TakingOff 

act2   :    curr_RW_status ≔ unavailable 

act3   :    curr_RWL_status ≔ ON 

END

Takeoff_Preparing  

ANY

aircraft 

WHERE

grd1   :    aircraft ∈ aircrafts_in_airport 

grd2   :    statusof(aircraft) = 

TerminatedL 

THEN

act1   :    statusof(aircraft) ≔ ReadyT 

END

Terminating_Landing 

ANY

aircraft 

WHERE

grd1   :    aircraft ∈ aircrafts_in_airport 

grd2   :    statusof(aircraft) = Landing 

THEN

act1   : statusof(aircraft) ≔ TerminatedL 

act2   :    curr_RW_status ≔ available 

act3   :    curr_RWL_status ≔ OFF 

END

Start_Landing 

ANY

aircraft 

WHERE

grd1   :    aircraft ∈ aircrafts_in_airport 

grd2   :    statusof(aircraft) = ReadyL 

grd3   :    curr_RW_status = available 

grd4   :    curr_RWL_status = OFF 

THEN

act1   :    statusof(aircraft) ≔ Landing 

act2   :    curr_RW_status ≔ unavailable 

act3   :    curr_RWL_status ≔ ON 

END

In this Initial model, the very basic process of circulation in the airport vicinity is mod-
eled. Therefore, most invariants are simply typing invariants; however other invariants 
in the next refinement we will be presented.

First refinement: introducing scheduling methods

This first refinement focuses on ENV-5, FUN-4, FUN-5, SAF-5, and SAF-6.
The first refinement is more precise and contains more details; however, it should not 

contradict with the initial model. Therefore, some consistency proofs are established.
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In this refinement, we present how the system manages aircrafts taking off and land-
ing (John 2016; NASA Air Traffic Management Demonstration Goes Live in Charlotte 
2017). Therefore, we need to define some additional variables and invariants. The first 
variable is deadline which is a total function from the aircrafts_in_airport set to some 
natural number. The second is a set for aircrafts ready to take off denoted ready_to_take-
off_aircrafts. We present also another variable that refers to the moment that an aircraft 
became ready to land. Finally, we introduce a set for aircrafts requiring urgent landing 
due to a certain issue.

 

INVARIANTS 

inv1   :    deadline ∈ aircrafts_in_airport → ℕ   

inv3   :    ready_to_takeoff_aircrafts ⊆ aircrafts_in_airport  

inv2   :    the_ready_to_takeoff_moment ∈ ready_to_takeoff_aircrafts → ℕ  

inv4   :    ∀A·(A∈ready_to_takeoff_aircrafts ⇒ A∈aircrafts_in_airport ∧ statusof(A)=ReadyT)  

The currently used method for aircrafts taking off is FCFS where aircrafts take off in the 
order that they are ready (In Focus: ICAO’S Strategic Objectives 2018; John 2016). We for-
malize this by introducing firstly a set of aircrafts ready to take off and a total function 
returning for each aircraft the moment it is ready to take off. These moments are associ-
ated at the same time aircrafts are associated to the readyL status. This is done during the 
takeoff_preparing event in addition to adding the aircraft to the ready_to_takeoff_aircrafts 
set. Once having these data about aircrafts, the system adopts the FCFS scheduling for giv-
ing take off clearance by means of the following guards in the start_takingoff event:

 

grd5   :    ∀A· A∈aircrafts_in_airport ⇒ statusof(A)≠TakingOff  

grd6   : ∀A· A∈ready_to_takeoff_aircrafts ⇒  

the_ready_to_takeoff_moment(A)≥ the_ready_to_takeoff_moment(aircraft) 

The first guard requires that there is no other aircraft using the runway to take off (In 
Focus: ICAO’S Strategic Objectives 2018). The second one ensures that the aircraft that 
will get take off clearance is the one with the minimum ready to take off moment (the 
one has been ready to take off first) (Fact Sheet-FAA & NTSB’s “Most Wanted” Recom-
mendations 2010; Department of transportation federal aviation administration 2017; 
John 2016). Finally, we delete information about the aircraft after give it landing clear-
ance by means of the following two actions:

 

act4   :    ready_to_takeoff_aircrafts ≔ ready_to_takeoff_aircrafts ∖ {aircraft}  

act5   :    the_ready_to_takeoff_moment ≔ {aircraft} ⩤ the_ready_to_takeoff_moment 

Similarly to the take off process, the currently used method for aircraft landing is FCFS 
(Pinol and Beasley 2006; Vairaktarakis and Aydinliyim 2017). This method is very basic 
and simple which ease its implementation. However, the aircraft with a low landing speed 
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may increase the waiting duration of other faster ones which affect the total landing 
duration. In addition, FCFS limits flexibility to air traffic controllers to act in emergency 
situations (Vairaktarakis and Aydinliyim 2017; Schmidt et  al. 2017; NASA Air Traffic 
Management Demonstration Goes Live in Charlotte 2017). Hence, we propose a use a 
new approach based on real-time scheduling algorithm, Deadline Monotonic (DM) in 
our case (Jarrar et al. 2017). This approach assigns landing priority to aircrafts with the 
shortest deadline which offers an effective method for meeting deadlines as much as pos-
sible. However, maintaining deadlines respected is not always possible. In some cases, the 
sum of some high priority aircrafts landing durations is greater than the deadline of an 
aircraft with a lower priority. In this situation, we have two choices: the first is to proceed 
landing even if some aircrafts will not respect their deadlines (note that we still optimiz-
ing deadlines respecting) (Su and Abrial 2017). The second is to prevent the aircraft from 
entering VOR and redirect it to another runway. This choice is up to controller to decide, 
the system will only notify him. This notification is done as soon as the aircraft try to 
enter the VOR; therefore, the following guards in the Entering_VOR event are added:

grd3 : (SIGMA({i ↦ ld∣∃A· i∈ card(aircrafts_in_airport) ∧  ld=AVERAGE_LD(A) ∧ 

A∈aircrafts_in_airport  ∧  deadline(A) ≤ deadline(aircraft)})  ≤ deadline(aircraft) ∧ Urgents = ∅) 

∨ aircraft ∈ Urgents 

grd4   :    (∀A· A∈aircrafts_in_airport ∧ deadline(A)>deadline(aircraft) ⇒ SIGMA({i ↦ ld∣∃a· i∈ 

card(aircrafts_in_airport) ∧  ld=AVERAGE_LD(a) ∧ a∈aircrafts_in_airport ∧ deadline(a) 

≤deadline(A)}) + deadline(aircraft) ≤ deadline(A) ∧ Urgents = ∅)) ∨ aircraft ∈ Urgents

For each guards there is two cases, the first one is when there is no emergency landing 
request (Urgents = ∅, where Urgents is the set of aircrafts requesting emergency landing) 
(John 2016). In this case, the aircraft entering the VOR should have a deadline greater than 
or equals the sum (SIGMA function) of all average landing durations (AVERAGE_LD func-
tion) of aircrafts in the airport having a deadline lower than the entering aircraft deadline. 
The SIGMA function and AVERAGE_LD are formalized in the second context as follows:

CONSTANTS

BAG

SIGMA 

AVERAGE_LD 

AXIOMS

axm1   :    BAG={e· e∈ℕ⇸ℕ ∧ �inite(e) ∧ dom(e)=1 

card(e)∣e}

axm1   :    SIGMA ∈ BAG→ℕ  

axm2   :    SIGMA(∅) = 0 

axm3 : ∀e· e∈BAG ∧ e≠∅ ⇒ SIGMA(e)= e(card(e)) + 

SIGMA({card(e)}⩤e) 

END

The second case is when the entering aircraft is requesting an emergency landing (air-
craft ∈ Urgents). The Urgents-Cases such as Aeronautical failure, Bad climate, Terrorist 
attacks, Kidnapping, threat may affect passenger safety. According to the landing process 
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on DM scheduling, the emergency cases have the highest priority to land in the first 
time, the VOR and the supervisor must look for a not used runway where the aircraft 
may be landed. In the second times, those having the lowest deadline are able to be land. 
This is formalized as guards in the start_landing event as follows:

grd5   :    ∀A· A∈aircrafts_in_airport ⇒ statusof(A)≠Landing 

grd6   :    ((deadline(aircraft)=min({dl ∣∃A· A∈aircrafts_in_airport ∧ statusof(A)=ReadyL ∧ 

dl=deadline(A)})) ∧ Urgents=∅) ∨ aircraft∈Urgents

Finally, we present below a new set associated to the aircrafts in the runway which is a 
subset of the aircrafts_in_airport (inv 5). We introduce also an inv 6 that express that the 
curr_RW_status is “unavailable” if and only if there is a single airplane in state TakingOff 
or Landing. And such invariant would ensure that no accident may happen on the run-
way. Associated basic guards must be added in the start landing event to ensure that the 
system preserve this invariants, and also some actions for adding and removing aircrafts 
from the aircrafts_in_runway set.

Inv 5   :    aircrafts_in_runway ⊆ aircrafts_in_airport

Inv 6 :    aircrafts_in_runway≠∅ ⇒ curr_RW_status ≔ unavailable

Second refinement: towards an alert system for a secured ATC​

In this last refinement we model safety requirements from 7 to 10 (SAF-7, SAF-8, SAF-9, 
and SAF-10).

In the previous models, we formalized the functional aspect of the system. Here, an 
alert system is presented to provide more security for the ATC (In Focus: ICAO’S Strate-
gic Objectives 2018; Fact Sheet-FAA & NTSB’s “Most Wanted” Recommendations 2010; 
Department of transportation federal aviation administration 2017; John 2016; NASA 
Air Traffic Management Demonstration Goes Live in Charlotte 2017). However, we 
need to firstly define the following carrier set and constants:

SETS

BRAND 

CONSTANTS

LOCATIONS 

Min_distance 

Separation_Time 

AXIOMS

axm1   :    LOCATIONS = ℕ×ℕ×ℕ 

axm2   :    Min_distance ∈ ℕ  

axm3   :    Separation_Time ∈ BRAND → ℕ  

END



Page 17 of 23Jarrar and Balouki ﻿Complex Adapt Syst Model  (2018) 6:6 

In this context, we introduce the aircrafts brands set. These brands will be needed 
to determine the minimum separation time between two aircrafts. Besides, we pre-
sent the LOCATION as a Cartesian product of three natural number sets which refer 
respectively to altitude, latitude and longitude. Finally, we define a total function 
(Separation_Time) from the BRAND set to natural numbers formalizing the separa-
tion time between two successive aircrafts.

The first thing we consider in this last machine is how to integrate time constraint 
which is not predefined in Event-B. Cansell et al. (2007) presented a pattern to inte-
grate time constraint, this pattern propose integrating the time constraint in two 
major steps. The first step focuses on defining time variables and the related invari-
ants in addition to the initialization values. In the second three events are included to 
allow the system to consider time progression.

The pattern proposes the following two variables of time:

• • time in N models the current time value. The incrementation of this value denotes 
the time progression. This variable is initialized by zero at the moment of system 
start that we consider the beginning of time.

• • at ⊆ N is the known future active times of the system. Each active time stands for 
future event activation. In our case, this variable stands for the landing and taking 
off times that we have modelled previously.

The invariant proposed in this pattern are simple, two of them are typing invariants 
related to the both time variables. The Third invariant ensures that active times are in 
the future which means that the time cannot be moved beyond the minimum active 
time, this should be correct because if time goes beyond one event activation, then we 
miss the right moment for observing it (Cansell et al. 2007).

To summarize, the first step will be modelled as follows:

VARIABLES

time

at

INVARIANT

time ∈ N

at ⊆ N

at ≠ ∅ ⇒ time ≤ min(at)

INITIALISATION

…

time := 0

at := ∅
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The three events presented in the second step represent different temporal aspects: 
creation of a new active time (post_time), time progressing (tick_tock), and the last 
event consider event in the time constraint (process_time).

The post_time event adds a new active time tm in the at set under the constrain that 
the new active time is in the future (tm is greater than time).

Post_time

ANY

tm 

WHERE

tm ∈ N

tm > time

THEN

at := at ∪ {tm}

END

The second event allows observing time progression; it simply takes a new value of 
time and assigns it in the current time variable.

Tick_tock

ANY

tm

WHERE

tm ∈ N

tm > time

at ≠ ∅ ⇒ tm ≤ min(at)

THEN

time := tm

END

The last event allows the system to consider events with time constraints. It 
has one guard, which is time ∈ at meaning that the current time is an active then 
the only action in this event remove that active time to preserve the invariant 
at ≠ ∅ ⇒ time ≤ min(at).

Process_time

WHEN

time ∈ at

THEN

at := at − {time}

END

Now we formalize the fact that the separation time between two aircraft landing 
depends strongly upon the last aircraft brand. This requirement is based on aerodynamic 
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consideration: an aircraft generates a great deal of air turbulence when it flies. If another 
aircraft flies too close behind it, it will lose aerodynamic stability (Yu and Bin 2011; In 
Focus: ICAO’S Strategic Objectives 2018). For safety purpose, the landing time between 
two aircrafts should be always greater than the separation time defined by the Separa-
tion_Time function. After each landing, two things must be saved to ensure the safety of 
the next landing: the time of the previous landing and the separation time (Carreño and 
Muñoz 2005; Umeno and Lynch 2007; In Focus: ICAO’S Strategic Objectives 2018; John 
2016; NASA Air Traffic Management Demonstration Goes Live in Charlotte 2017). This 
is formalized in the Terminating_landing event as follows:

act4 :    last_landing_t ≔ time

act5 :     at := at ∪ {time + Separation_Time(brandof(aircraft))}

where, the current time will be saved using the last_landing_t variable and a new active 
time will be added which is the current time plus the separation time, where the brandof 
is a total function from aircrafts to brands.

To prove that the system always maintains separation time respected the following 
guard must be added to the start_landing event:

grd10   :    time − last_landing_t ≥ separation_t

As well the separation time, a minimum separation distance must be maintained 
between aircraft during flying in the airport airspace (Narkawicz and Munoz 2015; Fact 
Sheet-FAA & NTSB’s “Most Wanted” Recommendations 2010; John 2016). If two air-
crafts are keeping this distance, collision will be strongly avoided as well as wake tur-
bulence. The minimum distance is fixed and denoted by the Min_distance constant 
presented in the previous context. To insure that the minimum distance will be kept the 
following invariant must be preserved:

inv7   :    ∀a,b· a∈aircrafts_in_airport ∧ b∈aircrafts_in_airport ⇒ 

distance(locationof(a)↦locationof(b))≥Min_distance

The distance function is defined from LOCATIONxLOCATION to natural numbers, it 
calculate the distance between two aircrafts basing on their locations determinate by means 
of the location of function. These two functions are defined in the following two invariants:

inv1   :    locationof ∈ AIRCRAFTS→LOCATIONS 

inv2   :    distance ∈ LOCATIONS×LOCATIONS → ℕ  

Since the controllers should be aware of the system status in real-time, the system should 
response to each aircraft movement. Therefore, we introduce two new events: Aircraft_
moving_Alert_ON and Aircraft_moving_Alert_OFF. One of these two events triggers 
whenever an aircraft moves, the first one triggers when the movement of an aircraft is not 
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allowed which turn an alert on. Thus, its guards are verified if one of a not-allowed move-
ment happens. On the other hand, the Aircraft_moving_Alert_OFF event trigger when the 
movement is allowed verifying all security properties which turns the alert off if it is on. 
This work focuses on the minimum distance property as our example for proving secu-
rity properties (Platzer and Clarke 2009; In Focus: ICAO’S Strategic Objectives 2018; Fact 
Sheet-FAA & NTSB’s “Most Wanted” Recommendations 2010; Department of transpor-
tation federal aviation administration 2017; John 2016; NASA Air Traffic Management 
Demonstration Goes Live in Charlotte 2017). Other security properties may be added by 
means of disjunction of different properties in the Aircraft_moving_Alert_ON event, and 
the conjunction of these properties in Aircraft_moving_Alert_OFF.

Aircraft_moving_Alert_ON

ANY

aircraft 

loc 

WHERE

grd1   :    loc ∈ LOCATIONS 

grd2   :    aircraft ∈ AIRCRAFTS 

grd3   :    (∃a· a∈AIRCRAFTS ∧ distance(locationof(a)↦loc)<Min_distance) ∨ 

¬ ( Security property 1) ∨ ¬ ( security property 2) ∨ … 

THEN

act1   :    Alert ≔ TRUE 

act2   :    locationof(aircraft)≔loc 

END

This alert system highly minimizes human error due the real-time control of all air-
crafts movements in the radar range.

This alert system is formalized as below:

Aircraft_moving_Alert_OFF 

ANY

aircraft 

loc 

WHERE

grd1   :    aircraft ∈ AIRCRAFTS 

grd2   :    loc ∈ LOCATIONS 

grd3   :    (∀a· a∈AIRCRAFTS ⇒ distance(locationof(a)↦loc)≥Min_distance) ∧ (Security 

property1) ∧ (Security property 2) ∧ … 

THEN

act1   :    Alert ≔ FALSE 

act2   :    locationof(aircraft)≔loc 

END

Proving model correctness and result
The RODIN platform is used to prove model correctness (Rodin et al. 2011). Table 1 pre-
sents the statistics proofs generated by RODIN (Jarrar and Balouki 2018).
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The Table  1 measures the size of proofs generated including automatic and manual 
proofs. Note that there are many proof obligations in the first refinement due to the 
introduction of scheduling management. In order to guarantee the correctness of this 
scheduling process, various invariants must be established. Moreover, our formal model 
introduces management functions such as sigma, min, deadline and average landing 
durations. According to this report, we conclude that RODIN inference prover was able 
to establish 91% of proofs, which makes the task of modeling and proving easier. The 
combination of automatic and manual proofs ensures that the system developed here is 
correct by construction.

Conclusion
We discussed the steps and reasoning involved in the construction of a model of take-off 
and landing at an airport runway using the Event-B modeling language and verified with 
the Rodin tool. The main contribution is presenting a standard model that can be used 
to develop an air traffic control system. We cover the most important requirements pro-
posed by the most well-know organizations in this domain, which facilitate the develop-
ment of such a complex system. According to the requirements document, engineers 
may add more refinements by formalizing their typical requirements to develop the final 
model.

In future work, we hope to be able to improve our model by considering the case of 
several runways in the same airport and several airports. Besides, it is very useful to 
combine this method with other modeling and simulation techniques such as Monte 
Carlo presented in (Bouarfa et al. 2013), which highly improves system feasibility. Fur-
thermore, we aim to apply standardizations such as QoS (Jarrar et  al. 2017) and RM-
ODP (Belhaj et al. 2010) in the field of air traffic management.
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