
A tale of lock‑free agents: towards Software
Transactional Memory in parallel Agent‑Based
Simulation
Jonathan Thaler*  and Peer‑Olaf Siebers

Abstract 

With the decline of Moore’s law and the ever increasing availability of cheap mas‑
sively parallel hardware, it becomes more and more important to embrace parallel
programming methods to implement Agent-Based Simulations (ABS). This has been
acknowledged in the field a while ago and numerous research on distributed parallel
ABS exists, focusing primarily on Parallel Discrete Event Simulation as the underly‑
ing mechanism. However, these concepts and tools are inherently difficult to master
and apply and often an excess in case implementers simply want to parallelise their
own, custom agent-based model implementation. However, with the established
programming languages in the field, Python, Java and C++, it is not easy to address
the complexities of parallel programming due to unrestricted side effects and the
intricacies of low-level locking semantics. Therefore, in this paper we propose the use
of a lock-free approach to parallel ABS using Software Transactional Memory (STM)
in conjunction with the pure functional programming language Haskell, which in
combination, removes some of the problems and complexities of parallel implementa‑
tions in imperative approaches. We present two case studies, in which we compare
the performance of lock-based and lock-free STM implementations in two different
well known Agent-Based Models, where we investigate both the scaling performance
under increasing number of CPU cores and the scaling performance under increasing
number of agents. We show that the lock-free STM implementations consistently out‑
perform the lock-based ones and scale much better to increasing number of CPU cores
both on local hardware and on Amazon EC. Further, by utilizing the pure functional
language Haskell we gain the benefits of immutable data and lack of unrestricted side
effects guaranteed at compile-time, making validation easier and leading to increased
confidence in the correctness of an implementation, something of fundamental
importance and benefit in parallel programming in general and scientific computing
like ABS in particular.

Keywords:  Agent-Based Simulation, Software Transactional Memory, Parallel
programming, Haskell

Open Access

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5
https://doi.org/10.1186/s40294-019-0067-9

*Correspondence:
jonathan.thaler@nottingham.
ac.uk
University of Nottingham,
7301 Wollaton Rd,
Nottingham NG8 1BB, UK

http://orcid.org/0000-0001-8736-0479
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40294-019-0067-9&domain=pdf

Page 2 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

Introduction
The future of scientific computing in general and Agent-Based Simulation (ABS) in
particular is parallelism: Moore’s law is declining as we are reaching the physical limits
of CPU clocks. The only option is to go massively parallel due to availability of cheap
parallel local hardware with many cores, or cloud services like Amazon EC. This trend
has been already recognised in the field of ABS as a research challenge for Large-scale
ABMS (Macal 2016) was called out and as a substantial body of research for parallel ABS
shows (Suryanarayanan et al. 2013; Logan and Theodoropoulos 2001; Lees et al. 2008;
Suryanarayanan and Theodoropoulos 2013; Riley et al. 2003; Gasser and Kakugawa
2002; Himmelspach and Uhrmacher 2007; Minson and Theodoropoulos 2008; Gorur
et al. 2016; Hay and Wilsey 2015; Abar et al. 2017; Cicirelli et al. 2015).

In this body of work it has been established that parallelisation of autonomous agents,
situated in some spacial, metric environment can be particularly challenging. The reason
for this is that the environment constitutes a key medium for the agents interactions,
represented as a passive data structure, recording attributes of the environment and the
agents (Lees et al. 2008). Thus, the problem of parallelising ABS boils down to the prob-
lem of how to synchronise access to shared state without violating the causality principle
and resource constraints (Logan and Theodoropoulos 2001; Suryanarayanan et al. 2013).
Various researchers have developed different techniques, where most of them are based
on the concept of Parallel Discrete-Event Simulation (PDES). The idea behind PDES is
to partition the shared space into logical processes, which run at their own speed, pro-
cessing events coming from themselves and other logical processes. To deal with incon-
sistencies there exists a conservative approach, which does not allow to process events
with a lower timestamp than the current time of the logical process; and an optimistic
approach, which deals with inconsistencies through rolling back changes to state.

Adopting PDES to ABS is challenging as agents are autonomous, which means that
the topology can change in every step, making it hard to predict the topology of logical
processes in advance (Lees et al. 2008), posing a difficult problem for parallelisation in
general (Cicirelli et al. 2015). The work (Suryanarayanan et al. 2013; Suryanarayanan and
Theodoropoulos 2013) discusses this challenge by giving a detailed and in-depth discus-
sion of the internals and implementation of their powerful and highly complex PDES-
MAS system. The rather conceptual work (Logan and Theodoropoulos 2001) proposes
a general, distributed simulation framework for multiagent systems and addresses a
number of key problems: decomposition of the environment, load balancing, modelling,
communication and shared state variables, which the authors mention as the central
problem of parallelisation.

In addition, various distributed simulation environments for ABS have been developed
and their internals published in research papers: the SPADES system (Riley et al. 2003)
manages agents through UNIX pipes using a parallel sense-think-act cycle employing a
conservative PDES approach; Mace3J (Gasser and Kakugawa 2002) a Java based system
running on single- or multicore workstations implements a message passing approach
to parallelism; James II (Himmelspach and Uhrmacher 2007) is also a Java based system
and focuses on PDEVS simulation with a plugin architecture to facilitate reuse of mod-
els; the well known RePast-HPC (Minson and Theodoropoulos 2008; Gorur et al. 2016)
framework is using a PDES engine under the hood.

Page 3 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

The baseline of this body of research is that parallelisation is possible and we know
how to do it. However, the complexity of these parallel and distributed simulation con-
cepts and toolkits is high and the model development effort is hard (Abar et al. 2017).
Further, this sophisticated and powerful machinery is not always required as ABS does
not always need to be run in a distributed way but the implementers ‘simply’ want to par-
allelise their models locally. Although these existing distributed ABS frameworks could
be used for this, they are an excess and more straightforward concepts for parallelising
ABS would be appropriate. However, for this case there does not exist much research,
and implementers either resort to the distributed ABS frameworks, implement their
own low-level concurrency plumbing, which can be considerably complex—or simply
refrain from using parallelism due to the high complexity involved and accept a longer
execution time. What makes it worse is that parallelism always comes with the danger of
additional, very subtle bugs, which might lie dormant, potentially invalidating significant
scientific results of the model. Therefore something simpler is needed for local parallel-
ism. Unfortunately, the established imperative languages in the ABS field, Python, Java,
C++, don’t make adding parallelism easy, due to their inherent use of unrestricted side
effects. Further, they mostly follow a lock-based approach to concurrency which is error
prone and does not compose.

This paper proposes Software Transactional Memory (STM) in conjunction with
the functional programming language Haskell (Hudak et al. 2007) as a new underlying
concept for local parallelisation of ABS. We hypothesise that by using STM in Haskell,
implementing local parallel ABS is considerably easier than with lock-based approaches,
less error prone and easier to validate. Although STM exists in other languages as well
by now, Haskell was one of the first to natively build it into its core. Further, it has the
unique benefit that it can guarantee the lack of persistent side effects at compile time,
allowing unproblematic retries of transactions, something of fundamental importance
in STM. This makes the use of STM in Haskell very compelling. Our hypothesis is sup-
ported by Discolo et al. (2006), which gives a good indication of how difficult and com-
plex constructing a correct concurrent program is and shows how much easier, concise
and less error-prone an STM implementation is over traditional locking with mutexes
and semaphores. Further, it shows that STM consistently outperforms the lock-based
implementation.

To the best of our knowledge we are the first to systematically discuss the use of STM
in the context of ABS. However, the idea of applying transactional memory to simula-
tion in general is not new and was already explored in the work (Hay and Wilsey 2015),
where the authors looked into how to apply Intel’s hardware transactional memory to
simulations in the context of a Time Warp PDES simulation. The results showed that
their approach generally outperformed traditional locking mechanisms.

The master thesis (Bezirgiannis 2013) investigates Haskell’s parallel and concurrency
features to implement (amongst others) HLogo, a Haskell clone of the NetLogo (Wilen-
sky and Rand 2015) simulation package, focusing on using STM for a limited form of
agent interactions. HLogo is basically a re-implementation of NetLogos API in Haskell,
where agents run within an unrestricted side effect context (known as IO, see more
below in “Side effects” section) and therefore can also make use of STM functionality.
The benchmarks show that this approach does indeed result in a speedup especially

Page 4 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

under larger agent populations. Despite the parallelism aspect our work share, our
approach is rather different: we avoid unrestricted side effects through IO within the
agents and explore the use of STM more generally rather than implementing an ABS
library.

The aim of this paper is to experimentally investigate the benefits of using STM over
lock-based approaches for concurrent ABS models. Therefore, we follow (Discolo et al.
2006) and compare the performance of lock-based and STM implementations and
expect that the reduced complexity and increased performance will be directly appli-
cable to ABS as well. We present two case studies in which we employ an agent-based
spatial SIR (Macal 2010; Thaler et al. 2018) and the well known SugarScape (Epstein and
Axtell 1996) model to test our hypothesis. The latter model can be seen as one of the
most influential exploratory models in ABS, which laid the foundations of object-ori-
ented implementation of agent-based models. The former one is an easy-to-understand
explanatory model, which has the advantage that it has an analytical theory behind it,
which can be used for verification and validation.

The contribution of this paper is a systematic investigation of the usefulness of STM
over lock-based approaches, therefore giving implementers a new method of locally
parallelising their own implementations without the overhead of a distributed, parallel
PDES system or the error-prone low-level locking semantics of a custom built parallel
implementation. Therefore, our paper directly addresses the Large-scale ABMS chal-
lenge (Macal 2016), which focuses on efficient modelling and simulating large-scale
ABS. Further, using STM, which restricts side effects, and makes parallelism easier, can
help in the validation challenge (Macal 2016) H5: Requirement that all models be com-
pletely validated.

We start with “Background” section , where we discuss the concepts of STM and side
effects in Haskell. In “Software Transactional Memory in Agent-Based Simulation” sec-
tion we show how to apply STM to ABS in general. “Case study 1: spatial SIR model”
section contains the first case study using a spatial SIR model, whereas “Case study
2: SugarScape” section presents the second case study using the SugarScape model.
We conclude in “Conclusion” section and give further research directions in “Future
research” section.

Background
Software Transactional Memory

Software Transactional Memory (STM) was introduced by Shavit and Touitou (1995) in
1995 as an alternative to lock-based synchronisation in concurrent programming which,
in general, is notoriously difficult to get right. This is because reasoning about the inter-
actions of multiple concurrently running threads and low level operational details of
synchronisation primitives is very hard. The main problems are:

•	 Race conditions due to forgotten locks;
•	 Deadlocks resulting from inconsistent lock ordering;
•	 Corruption caused by uncaught exceptions;
•	 Lost wake ups induced by omitted notifications.

Page 5 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

Worse, concurrency does not compose. It is very difficult to write two functions (or
methods in an object) acting on concurrent data which can be composed into a larger
concurrent behaviour. The reason for it is that one has to know about internal details
of locking, which breaks encapsulation and makes composition dependent on knowl-
edge about their implementation. Therefore, as an example it is impossible to compose
two functions where one withdraws some amount of money from an account and the
other deposits this amount of money into a different account: one ends up with a tempo-
rary state, where the money is in none of either accounts, creating an inconsistency—a
potential source for errors because threads can be rescheduled at any time.

STM promises to solve all these problems for a low cost by executing actions atom-
ically, where modifications made in such an action are invisible to other threads and
changes by other threads are invisible as well until actions are committed—this means
that STM actions are atomic and isolated. When an STM action exits, either one of two
outcomes happen: if no other thread has modified the same data as the thread running
the STM action, then the modifications performed by the action will be committed and
become visible to the other threads. If other threads have modified the data then the
modifications will be discarded, the action block rolled back and automatically restarted.

STM in Haskell is implemented using optimistic synchronisation, which means that
instead of locking access to shared data, each thread keeps a transaction log for each
read and write to shared data it makes. When the transaction exits, the thread checks if
it had a consistent view to the shared data by verifying whether other threads have writ-
ten to memory it has read or not.

However, STM does not come without issues. The authors of Perfumo et al. (2008)
analyse several Haskell STM programs with respect to their transactional behaviour and
identified the roll-back rate as one of the key metric, which determines the scalability
of an application. Although STM might promise better performance, they also warn of
the overhead it introduces, which could be quite substantial in particular for programs
which do not perform much work inside transactions as their commit overhead appears
to be high.

Parallelism, concurrency and software transactional memory in Haskell

In our case studies we are using the functional programming language Haskell. The
paper of Hudak et al. (2007) gives a comprehensive overview over the history of the lan-
guage, how it developed and its features and is very interesting to read and get accus-
tomed to the background of the language. Note that Haskell is a lazy language, which
means that expressions are only evaluated when they are actually needed.

Side effects

One of the fundamental strengths of Haskell is its way of dealing with side effects in
functions. A function with side effects has observable interactions with some state out-
side of its explicit scope. This means that the behaviour depends on history and that
it loses its referential transparency character. With referential transparency a computa-
tion does not depend on its context within the system but will produce the same result
when run repeatedly with similar inputs, which makes understanding and debugging
much easier. Examples for side effects are (amongst others): modifying a global variable,

Page 6 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

awaiting an input from the keyboard, reading or writing to a file, opening a connection
to a server, drawing random numbers, etc.

The unique feature of Haskell is that it allows to indicate in the type of a function that it
does have side effects and what kind of effects they are. There are a broad range of differ-
ent effect types available, to restrict the possible effects a function can have, for example
drawing random numbers, sharing read/write state between functions, etc. Depending
on the type, only specific operations are available, which is then checked by the compiler.
This means that a program which tries to read from a file in a function which only allows
drawing random numbers will fail to compile.

In this paper we are only concerned with two effect types: the IO effect context can be
seen as completely unrestricted as the main entry point of each Haskell program runs
in the IO context which means that this is the most general and powerful one. It allows
all kind of input/output (IO) related side effects: reading/writing a file, creating threads,
write to the standard output, read from the keyboard, opening network connections,
mutable references, etc. Also, the IO context provides functionality for concurrent locks
and global shared references. The other effect context we are concerned with is STM and
indicates the STM context of a function—we discuss it more in detail below in “Software
Transactional Memory” and “STM examples” sections.

A function with a given effect type needs to be executed with a given effect runner
which takes all necessary parameters depending on the effect and runs a given function
with side effects returning its return value and depending on the effect also an effect
related result. Note that we cannot call functions of different effect types from a func-
tion with another effect type, which would violate the guarantees. A function without
any side effect is called pure. Calling a pure function is always allowed because it has, by
definition, no side effects.

Although such a type system might seem very restrictive at first, we get a number of
benefits by making the type of effects we can use explicit. First, we can restrict the side
effects a function can have to a very specific type, which is guaranteed at compile time.
This means we can have much stronger guarantees about our program and the absence
of potential run time errors. Second, by the use of effect runners, we can execute effect-
ful functions in a very controlled way, by making the effect context explicit in the param-
eters to the effect runner.

Parallelism and concurrency

Haskell makes a very clear distinction between parallelism and concurrency. Parallelism
is always deterministic and thus pure without side effects because although parallel code
can be run concurrently, it does by definition not interact with data of other threads.
This can be indicated through types: we can run pure functions in parallel because for
them it doesn’t matter in which order they are executed, the result will always be the
same due to the concept of referential transparency.

Concurrency on the other hand is potentially nondeterministic because of nondeter-
ministic interactions of concurrently running threads through shared data. Although
data in functional programming is immutable, Haskell provides primitives which allow
to share immutable data between threads. Accessing these primitives is only possible
from within an IO or STM context, which means that when we are using concurrency in

Page 7 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

our program, the types of our functions change from pure to either a IO or STM effect
context.

Note that spawning tens of thousands or even millions of threads in Haskell is no
problem, because threads in Haskell have a very low memory footprint due to being
lightweight user space threads, also known as green threads, managed by the Haskell
Runtime System, which maps them to physical operating system worker threads (Mar-
low et al. 2009).

Software Transactional Memory

The work of Harris et al. (2005), Harris and Peyton Jones (2006) added STM to Haskell,
which was one of the first programming languages to incorporate STM into its main
core and added the ability to composable operations. In the Haskell implementation,
STM actions run within the STM context. This restricts the operations to only STM
primitives as shown below, which allows to enforce that STM actions are always repeat-
able without persistent side effects because such persistent side effects (e.g. writing to a
file, launching a missile) are not possible in an STM context. This is also the fundamental
difference to IO, where we lose static guarantees because everything is possible as there
are basically no restrictions because IO can run everything. Thus, the ability to restart a
block of actions without any visible effects is only possible due to the nature of Haskells
type system: by restricting the effects to STM only, prevents uncontrolled effects which
cannot be rolled back.

STM comes with a number of primitives to share transactional data. Amongst others
the most important ones are:

•	 TVar A transactional variable which can be read and written arbitrarily;
•	 TArray A transactional array where each cell is an individual shared data, allowing

much finer grained transactions instead of having the whole array in a TVar;
•	 TChan A transactional channel, representing an unbounded FIFO channel;
•	 TMVar A transactional synchronising variable which is either empty or full. To read

from an empty or write to a full TMVar will cause the current thread to block and
retry its transaction when the TMVar was updated by another thread.

To execute an STM action the function atomically::STM a→IO a is provided, which
performs a series of STM actions atomically within an IO context. It takes the STM action
which returns a polymorphic value of type a and returns an IO action which returns a
value of type a.

STM examples

We provide two examples to demonstrate the use and semantics of STM. The first exam-
ple is an implementation of the aforementioned functionality, where money is withdrawn
from one account and transferred to another. The implementing function transfer-
Funds takes two TVar, holding the account balances, and the amount to exchange. It
executes using atomically, therefore running in the IO context. It uses the two func-
tions withdraw and deposit which do the work of withdrawing some amount from
one account and depositing some amount to another. This example demonstrates how

Page 8 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

easy STM can be used: the implementation looks quite straightforward, simply swap-
ping values, without any locking involved or special handling of concurrency, other than
the use of atomically.

transferFunds :: TVar Integer -> TVar Integer -> Integer -> IO ()
transferFunds from to n = atomically $ do

withdraw from n
deposit to n

withdraw :: TVar Integer -> Integer -> STM ()
withdraw account amount = do

balance <- readTVar account
writeTVar (balance - amount)

deposit :: TVar Integer -> Integer -> STM ()
deposit account amount = do

balance <- readTVar account
writeTVar (balance + amount)

In the second example we show the retry semantics of STM, by combining the STM
context with a StateT context. A StateT context allows to read and write some state,
available to the function, which in this example we simply set to be an Int value. The
combination of both contexts is reflected in the type of the function, which bedsides tak-
ing a transactional variable TVar holding an Int, is StateT Int STM Int which
means that the function has access to both the StateT and STM functionality. The first
Int indicates that the StateT context allows to read and write an Int value, available
to the function; the second Int indicates that the function is also an STM action and will
return an Int value.

stmAction :: TVar Int -> StateT Int STM Int
stmAction v = do

-- print a debug output and increment the value in StateT
Debug.trace "increment!" (modify (+1))
-- read from the TVar
n <- lift (readTVar v)
-- await a condition: content of the TVar >= 42
if n < 42

-- condition not met, therefore retry: block this thread
-- until the TVar v is written by another thread, then
-- try again
then lift retry
-- condition met: return content ot TVar
else return n

When stmAction is run, it prints an ‘increment!’ debug message to the console
and increments the value in the StateT context. Then it awaits a condition for as long
as TVar is less then 42 the action will retry whenever it is run. If the condition is met,
it will return the content of the TVar. To run stmAction we need to spawn a thread:

Page 9 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

stmThread :: TVar Int -> IO ()
stmThread v = do

-- the initial state of the StateT effect
let s = 0
-- run the state with initial value of s (0)
let ret = runStateT (stmAction v) s
-- atomically run the STM action
(a, s’) <- atomically ret
-- print final result
putStrLn("final StateT state = " ++ show s’ ++

", STM computation result = " ++ show a)

The thread first runs the StateT context using the effect runner function runSta-
teT which takes the stmAction and the initial value of the effect context. This results
in an STM computation, which is executed through atomically. Finally, the result is
printed to the console. The value of a is the result of stmAction and s’ is the final
state of the StateT computation. To actually run this example we need the main thread
to update the TVar until the condition is met within stmAction:

main :: IO ()
main = do

-- create a new TVar with initial value of 0
v <- newTVarIO 0
-- start the stmThread and pass the TVar
forkIO (stmThread v)
-- do 42 times...
forM_ [1..42] (\i -> do

-- use delay to ’make sure’ that a retry is happening for every increment
threadDelay 10000
-- write new value to TVar using atomically, will cause the STM
-- thread to wake up and retry
atomically (writeTVar v i))

If we run this program, we will see ‘increment!’ printed 43 times, followed by
’final StateT state = 1, STM computation result = 42’. This clearly
demonstrates the retry semantics where stmAction is retried 42 times and thus prints
’increment!’ 43 times to the console. The StateT computation however is always
rolled back when a retry is happening. The rollback is easily possible in pure functional
programming due to persistent data structures, by simply throwing away the new value
and retrying with the old value. This example also demonstrates that any IO actions
which happen within an STM action are persistent and can obviously not be rolled back.
Debug.trace is an IO action masked as pure by the Haskell implementation, to sup-
port debugging of pure functions. If it would not have been masked as pure, the com-
piler would have not accepted the program, because the STM context does not allow the
execution of IO actions.

Software Transactional Memory in Agent‑Based Simulation
In this section we give a short overview of how to apply STM in ABS. We funda-
mentally follow a time-driven approach in both case studies, where the simulation is
advanced by some given �t and in each step all agents are executed. To employ paral-
lelism, each agent runs within its own thread and agents are executed in lock-step,

Page 10 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

synchronising between each �t , which is controlled by the main thread. This way of
stepping the simulation is introduced in Thaler and Siebers (2017) on a conceptual
level, where the authors name it concurrent update-strategy. See Fig. 1 for a visualisa-
tion of our concurrent, time-driven lock-step approach.

An agent thread will block until the main thread sends the next �t and runs the
STM action atomically with the given �t . When the STM action has been committed,
the thread will send the output of the agent action to the main thread to signal it has
finished. The main thread awaits the results of all agents to collect them for output of
the current step, for example visualisation or writing to a file.

As will be described in subsequent sections, central to both case studies is an envi-
ronment which is shared between the agents using a TVar or TArray primitive
through which the agents communicate concurrently with each other. To get the envi-
ronment in each step for visualisation purposes, the main thread can access the TVar
and TArray as well.

Adding STM to agents

A detailed discussion of how to add STM to agents on a technical level is beyond the
focus of this paper as it would require to give an in-depth technical explanation of
how our agents are actually implemented (Thaler et al. 2018).

However, the concepts are similar to the example in “STM examples” section. The
agent behaviour is an STM action and has access to the environment either through a
TVar or TArray and performs read and write operations directly on it. Each agent
itself is run within its own thread, and synchronises with the main thread. Thus, it
takes Haskells MVar synchronisation primitives to synchronise with the main thread
and simply runs the STM agent behaviour each time it receives the next tick DTime:

Fig. 1  Diagram of the parallel time-driven lock-step approach

Page 11 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

agentThread :: RandomGen g
=> Int -- Number of steps to compute
-> SIRAgent g -- Agent behaviour
-> g -- Random-number generator of the agent
-> MVar SIRState -- Synchronisation back to main thread
-> MVar DTime -- Receiving DTime for next tick
-> IO ()

agentThread 0 _ _ _ _ = return () -- all steps computed, terminate thread
agentThread n agent rng retVar dtVar = do

-- wait for dt to compute current step
dt <- takeMVar dtVar
-- compute output of current step
let agentSTMAction = runAgent agent
-- run the agents STM action atomically within IO
((ret, agent’), rng’) <- atomically agentSTMAction
-- post result to main thread
putMVar retVar ret
-- tail recursion to next step
agentThread (n - 1) agent’ rng’ retVar dtVar

Computing a simulation step is quite trivial within the main thread. All agent threads
MVars are signalled to unblock, followed by an immediate block on the MVars into
which the agent threads post back their result. The state of the current step is then
extracted from the environment, which is stored within the TVar which the agent
threads have updated:

simulationStep :: TVar SIREnv -- environment
-> [MVar DTime] -- sync dt to threads
-> [MVar SIRState] -- sync output from threads
-> DTime -- time delta
-> IO SIREnv

simulationStep env dtVars retVars dt = do
-- tell all threads to compute next tick with the corresponding DTime
mapM_ (‘putMVar‘ dt) dtVars
-- wait for results but ignore them, SIREnv contains all states
mapM_ takeMVar retVars
-- return state of environment when step has finished
readTVarIO env

Case study 1: spatial SIR model
Our first case study is the SIR model which is a very well studied and understood com-
partment model from epidemiology (Kermack and McKendrick 1927), which allows to
simulate the dynamics of an infectious disease like influenza, tuberculosis, chicken pox,
rubella and measles spreading through a population (Enns 2010).

In it, people in a population of size N can be in either one of three states Susceptible,
Infected or Recovered at a particular time, where it is assumed that initially there is at
least one infected person in the population. People interact on average with a given rate
of β other people per time unit and become infected with a given probability γ when
interacting with an infected person. When infected, a person recovers on average after
δ time units and is then immune to further infections. An interaction between infected
persons does not lead to re-infection, thus these interactions are ignored in this model.

We followed in our agent-based implementation of the SIR model the work (Macal
2010) but extended it by placing the agents on a discrete 2D grid using a Moore (8 sur-
rounding cells) neighbourhood (Thaler et al. 2018). A visualisation can be seen in Fig. 2.

Page 12 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

Due to the continuous-time nature of the SIR model, our implementation follows
the time driven (Meyer 2014) approach. This requires us to sample the system with
very small �t , which means that we have comparatively few writes to the shared envi-
ronment which will become important when discussing the performance results.

Experiment design

In this case study we compare the performance of five implementations under varying
numbers of CPU cores and agent numbers. The code of all implementations can be
accessed freely from the code repository (Thaler 2019a).

1	 Sequential—This is the reference implementation as discussed in Thaler et al. (2018),
where the agents are executed sequentially within the main thread without any con-
currency. The discrete 2D grid is represented using an indexed array (libraries@
haskell.org 2019) and shared amongst all agents as read-only data, with the main
thread updating the array for the next time step.

2	 Lock-Based Naive—This is the same implementation as Sequential, but the agents
now run concurrently in the IO context. The discrete 2D grid is also represented
using an indexed array but now modified by the agents themselves and therefore
shared using a global reference. The agents acquire and release a lock when accessing
the shared environment.

3	 Lock-Based Read–Write Lock—This is the same implementation as Lock-Based
Naive, but uses a read–write lock from concurrent-extra library (van Dijk et al. 2019)
for a more fine-grained locking strategy. This implementation exploits the fact that
in the SIR model, reads outnumber writes by far, making a read–write lock much
more appropriate than a naive locking mechanism, which unconditionally acquires
and releases the lock. However, it is important to note that this approach works only
because the semantics of the model support it: agents read any cells but only write
their own cell.

Fig. 2  Simulation of the spatial SIR model with a Moore neighbourhood at t = 100 . Initially a single infected
agent at the center, contact rate β =

1

5
 , infection probability γ = 0.05 and illness duration δ = 15 . Infected

agents are indicated by red circles, recovered agents by green ones. The susceptible agents are rendered as
blue hollow circles for better contrast

Page 13 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

4	 Atomic IO—This is the same implementation as Lock-Based Read–Write Lock but
uses an atomic modification operation to both read and write the shared environ-
ment. Although it runs in the IO context, it is not a lock-based approach as it does
not acquire locks but uses a compare-and-swap hardware instruction. A limitation
of this approach is that it is only applicable when there is just a single reference in
the program and that all operations need to go through the atomic modification
operation. As in the case of the Lock-Based Read–Write Lock implementation, this
approach works only because the semantics of the model support it.

5	 STM—This is the same implementation as Lock-Based Naive but agents run in the
STM context. The discrete 2D grid is also represented using an indexed array but
shared amongst all agents through a transactional variable TVar.

Each experiment was run on our hardware (see Table 1) under no additional workload
until t = 100 and stepped using �t = 0.1 . In the experiments we varied the number of
agents (grid size) as well as the number of cores when running concurrently. We checked
the visual outputs and the dynamics and they look qualitatively the same as the reference
Sequential implementation (Thaler et al. 2018). A rigorous, statistical comparison of
all implementations, to investigate the effects of concurrency on the dynamics, is quite
involved and therefore beyond the focus of this paper but as a remedy we refer to the use
of property-based testing, as shown in Thaler and Siebers (2019).

For robust performance measurements we used the microbenchmarking library Cri-
terion (O’Sullivan 2014a, b). It allows the definition and running of benchmark suites,
measuring performance by executing them repeatedly, fitting actual against expected
runtime, reporting mean and standard deviation for statistically robust results. By run-
ning each benchmark repeatedly, fitting it using linear regression analysis, Criterion is
able to robustly determine whether the measurements fall within a normal range or are
outliers (and therefore should be re-run) due to some external influences like additional
workload on the machine. Therefore, we made sure to only include measurements Cri-
terion labelled as normal, which meant we re-ran measurements where goodness-of-fit
was R2 < 0.99 . Criterion ran each of our benchmark 10 times with increasing incre-
ments of 1, 2, 3 and 4 times. In the results we report the estimates of ordinary least
squares regression together with the standard deviation because it gives the most reli-
able results in terms of statistical robustness.

Constant grid size, varying cores

In this experiment we held the grid size constant at 51 × 51 (2601 agents) and varied the
cores where possible. The results are reported in Table 2 and visualised in Fig. 3.

Table 1  Hardware and software details for all experiments

Model Dell XPS 13 (9370)

OS Ubuntu 19.10 64-bit

RAM 16 GByte

CPU Intel Core i7-8550U @ 3.6GHz × 8

HD 512Gbyte SSD

Haskell GHC 8.4.3 (stack resolver lts-12.4)

Page 14 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

Comparing the performance and scaling to multiple cores of the STM and both
Lock-Based implementations shows that the STM implementation significantly out-
performs the Lock-Based ones and scales better to multiple cores. The Lock-Based
implementations perform best with 3 and 4 cores respective, and shows decreasing
performance beyond 4 cores as can be seen in Fig. 3. This is no surprise because the
more cores, the more contention for the central lock, thus the more likely synchroni-
sation happening, ultimately resulting in reduced performance. This is not an issue
in STM because no locks are taken in advance due to optimistic locking, where a log
of changes is kept allowing the runtime to trigger a retry if conflicting changes are
detected upon transacting.

Table 2  Performance comparison of Sequential, Lock-Based, Atomic IO and STM SIR
implementations under varying cores with grid size of 51 × 51 (2601) agents

Best performance indicated in italic

Timings in seconds (lower is better), standard deviation in parentheses

Cores Sequential Lock-Based Naive Lock-Based
Read–Write

Atomic IO STM

1 73.9 (2.06) 59.2 (0.16) 55.0 (0.22) 51.0 (0.11) 52.2 (0.23)

2 – 46.5 (0.05) 40.8 (0.18) 32.4 (0.09) 33.2 (0.03)

3 – 44.2 (0.08) 35.8 (0.06) 25.5 (0.09) 26.4 (0.05)

4 – 47.4 (0.12) 34.0 (0.32) 22.7 (0.08) 23.3 (0.19)

5 – 48.1 (0.13) 34.5 (0.06) 22.6 (0.03) 23.0 (0.06)

6 – 49.1 (0.09) 34.8 (0.03) 22.3 (0.09) 23.1 (0.05)

7 – 49.8 (0.09) 35.9 (0.15) 22.8 (0.07) 23.4 (0.22)

8 – 57.2 (0.06) 40.4 (0.21) 25.8 (0.02) 26.2 (0.22)

Fig. 3  Performance comparison of Sequential, STM, Lock-Based and Atomic IO SIR implementations on
varying cores with grid size of 51 × 51 (2601) agents

Page 15 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

A big surprise however is that the Atomic IO implementation is slightly outperforming
the STM one, which is something we would not have anticipated. We attribute this to
the lower overhead of the atomic modification operation.

Both the STM and Atomic IO implementations are running into decreasing returns
after 5 to 6 cores, which we attribute to our hardware. Although virtually it comes across
as 8 cores it has only 4 physical ones, implementing hyper threading to simulate 4 addi-
tional cores. Due to the fact that resources are shared between two threads of a core, it is
only logical that we are running into decreasing returns in all implementations on more
than 5 to 6 cores on our hardware.

Varying grid size, constant cores

In this experiment we varied the grid size and used constantly 4 cores. The results are
reported in Table 3 and plotted in Fig. 4.

It is clear that the STM implementation outperforms the Lock-Based implementation
by a substantial factor. However, the Atomic IO implementation outperforms the STM

Table 3  Performance comparison of Lock-Based Read–Write, Atomic IO and STM SIR
implementations with varying grid sizes on 4 cores

Best performance indicated in italic

Timings in seconds (lower is better), standard deviation in parentheses

Grid size Lock-Based Read–Write Atomic IO STM

101 × 101 (10,201) 139.0 (0.15) 91.1 (0.14) 96.5 (0.27)

151 × 151 (22,801) 314.0 (0.67) 204.0 (0.36) 212.0 (0.16)

201 × 201 (40,401) 559.0 (1.22) 360.0 (0.61) 382.0 (0.85)

251 × 251 (63,001) 861.0 (0.62) 571.0 (0.71) 608.0 (1.20)

Fig. 4  Performance comparison of Lock-Based Read–Write, Atomic IO and STM SIR implementations with
varying grid sizes on 4 cores

Page 16 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

one again, where this time the difference is a bit more pronounced due to the higher
workload of the experiments.

Retries

Of very much interest when using STM is the retry ratio, which indicates how many
of the total STM actions had to be re-run. A high retry ratio shows that a lot of work is
wasted on re-running STM actions due to many concurrent read and writes. Obviously,
it is highly dependent on the read–write patterns of the implementation and indicates
how well an STM approach is suitable for the problem at hand. We used the stm-stats
(Breitner 2019) library to record statistics of commits, retries and the ratio. The results
are reported in Table 4.

Independent of the number of agents we always have a retry ratio of 0. This indicates
that this model is very well suited to STM, which is also directly reflected in the much
better performance over the Lock-Based implementations. Obviously this ratio stems
from the fact, that in our implementation we have very few conditional writes, which
happen only in case when an agent changes from Susceptible to Infected or from Infected
to Recovered.

Going large‑scale

To test how far we can scale up the number of cores in the best performing cases,
Atomic IO and STM, we ran two experiments, 51 × 51 and 251 × 251, on an Amazon EC
m5ad.16×large instance with 16 and 32 cores to see if we are running into decreas-
ing returns. The results are reported in Table 5.

The Atomic IO implementation is able to scale up performance from 16 to 32 cores
in the case of 51 × 51 but fails to do so with 251 × 251. We attribute this behaviour to
an increased number of retries of the atomic modification operation, which obviously

Table 4  Retry ratios of the SIR STM implementation with varying grid sizes on 4 cores

Grid size Commits Retries Ratio

51 × 51 (2601) 2,601,000 1306 0.0

101 × 101 (10,201) 10,201,000 3712 0.0

151 × 151 (22,801) 22,801,000 8189 0.0

201 × 201 (40,401) 40,401,000 13285 0.0

251 × 251 (63,001) 63,001,000 21217 0.0

Table 5  Performance comparison of Atomic IO and STM SIR implementations on 16 and 32
cores on an Amazon EC2 m5ad.16×large instance

Best performance indicated in italic

Timings in seconds (lower is better), standard deviations in parentheses

Cores 51 × 51 251 × 251

Atomic IO 16 18.0 (0.21) 638.0 (8.24)

32 15.6 (0.07) 720.0 (1.70)

STM 16 14.5 (0.03) 307.0 (1.12)

32 14.7 (0.17) 269.0 (1.05)

Page 17 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

increases when the number of agents increases. The STM implementation performance
on the other hand nearly stays constant on 16 and 32 cores in the 51 × 51 case. In both
cases we measured a retry ratio of 0, thus we conclude that with 32 cores we become
limited by the overhead of STM transactions (Perfumo et al. 2008) because the workload
of an STM action in our SIR implementation is quite small. On the other hand, with
heavy load as in the 251 × 251 case, we see an increased performance with 32 cores.

What is interesting is that on more cores, the STM implementations has an edge over
the Atomic IO approach, and performs better in all cases. It seems that for our problem
at hand, the atomic modification operation seems to be not as efficient on many cores as
an STM approach.

Summary

The timing measurements speak a clear language. Running in STM and sharing state
using a transactional variable TVar is much more time efficient than the Sequential
and both Lock-Based approaches. On 5 cores STM achieves a speedup factor of 3.2 over
the Sequential implementation, which is a big improvement compared to the simplic-
ity of the approach. What came as a surprise was that the Atomic IO approach slightly
outperforms the STM implementation. However, the Atomic IO approach, which uses
an atomic modification operation, is only applicable in case there is just a single refer-
ence in the program and requires that all operations go through this atomic modification
operation. Whether the latter condition is possible or not, is highly dependent on the
model semantics, which support it in the case of the SIR model but unfortunately not in
the case of Sugarscape.

Obviously both Lock-Based, Atomic IO and STM sacrifice determinism, which means
that repeated runs might not lead to same dynamics despite same initial conditions.
However, when sticking to STM, we get the guarantee that the source of this nondeter-
minism is concurrency within the STM context but nothing else. This can not be guaran-
teed in the case of both Lock-Based and Atomic IO approaches as we lose certain static
guarantees when running within the IO context. The fact to have both a substantial
speedup and the stronger static guarantees, makes the STM approach very compelling.

Case study 2: SugarScape
One of the first models in Agent-Based Simulation was the seminal Sugarscape model
developed by Epstein and Axtell (1996). Their aim was to grow an artificial society by
simulation and connect observations in their simulation to phenomenon observed in
real-world societies. In this model a population of agents move around in a discrete 2D
environment, where sugar grows, and interact with each other and the environment
in many different ways. The main features of this model are (amongst others): search-
ing, harvesting and consuming of resources, wealth and age distributions, population
dynamics under sexual reproduction, cultural processes and transmission, combat and
assimilation, bilateral decentralized trading (bartering) between agents with endogenous
demand and supply, disease processes transmission and immunology.

We implemented the Carrying Capacity (p. 30) section of Chapter II of the book
(Epstein and Axtell 1996). There, in each step agents search (move) to the cell with
the most sugar they see within their vision, harvest all of it from the environment and

Page 18 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

consume sugar based on their metabolism. Sugar regrows in the environment over
time. Only one agent can occupy a cell at a time. Agents don’t age and cannot die from
age. If agents run out of sugar due to their metabolism, they die from starvation and
are removed from the simulation. The authors report that the initial number of agents
quickly drops and stabilises around a level depending on the model parameters. This is
in accordance with our results as we show in Fig. 5 and guarantees that we don’t run out
of agents. The model parameters are as follows:

•	 Sugar Endowment: each agent has an initial sugar endowment randomly uniform
distributed between 5 and 25 units;

•	 Sugar Metabolism: each agent has a sugar metabolism randomly uniform distributed
between 1 and 5;

•	 Agent Vision: each agent has a vision randomly uniform distributed between 1 and 6,
same for each of the 4 directions (N, W, S, E);

•	 Sugar Growback: sugar grows back by 1 unit per step until the maximum capacity of
a cell is reached;

•	 Agent Number: initially 500 agents;
•	 Environment Size: 50 × 50 cells with toroid boundaries which wrap around in both x

and y dimension.

Experiment design

In this case study we compare the performance of four implementations under vary-
ing numbers of CPU cores and agent numbers. The code of all implementations can be
accessed freely from the code repository (Thaler 2019b).

Fig. 5  Visualisation of our SugarScape implementation and dynamics of the population size over 50 steps.
The white numbers in the blue agent circles are the agents unique ids

Page 19 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

1	 Sequential—This is the reference implementation, where all agents are run after
another (including the environment). The environment is represented using an
indexed array (libraries@haskell.org 2019) and shared amongst the agents using a
read and write state context.

2	 Lock-Based—This is the same implementation as Sequential, but all agents are run
concurrently within the IO context. The environment is also represented as an
indexed array but shared using a global reference between the agents which acquire
and release a lock when accessing it. Note that the semantics of Sugarscape do not
support the implementation of either a read–write lock or atomic modification
approach as in the SIR model. In the SIR model, the agents write conditionally to
their own cell, but this is not the case in Sugarscape, where agents need a consistent
view of the whole environment for the whole duration of an agent execution due to
the fact that agents do not only write their own locations but also to other locations.
If this is not handled correctly, data races are happening and threads overwrite data
from other threads, ultimately resulting in incorrect dynamics.

3	 STM TVar—This is the same implementation as Sequential, but all agents are run
concurrently within the STM context. The environment is also represented as an
indexed array but shared using a TVar between the agents.

4	 STM TArray—This is the same implementation as Sequential, but all agents are run
concurrently within the STM context. The environment is represented and shared
between the agents using a TArray.

Ordering The model specification requires to shuffle agents before every step (Epstein
and Axtell 1996, footnote 12 on page 26). In the Sequential approach we do this explic-
itly but in the Lock-Based and both STM approaches we assume this to happen automat-
ically due to race conditions from concurrency, thus we arrive at an effectively shuffled
processing of agents because we implicitly assume that the order of the agents is effec-
tively random in every step. The important difference between the two approaches is
that in the Sequential approach we have full control over this randomness but in the
STM and Lock-Based not. This has the consequence that repeated runs with the same
initial conditions might lead to slightly different results. This decision leaves the execu-
tion order of the agents ultimately to Haskell’s Runtime System and the underlying oper-
ating system. We are aware that by doing this, we make assumptions that the threads
run uniformly distributed (fair) but such assumptions should not be made in concurrent
programming. As a result we can expect this fact to produces non-uniform distribu-
tions of agent runs but we assumed that for this model this does not have a significance
influence. In case of doubt, we could resort to shuffling the agents before running them
in every step. This problem, where also the influence of nondeterministic ordering on
the correctness and results of ABS has to be analysed, deserves in-depth research on its
own and is therefore beyond the focus of this paper. As a potential direction for such an
investigation, we refer to the technique of property-based testing as shown in Thaler and
Siebers (2019).

Note that in the concurrent implementations we have two options for running the
environment: either asynchronously as a concurrent agent at the same time with the
population agents or synchronously after all agents have run. We must be careful though

Page 20 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

as running the environment as a concurrent agent can be seen as conceptually wrong
because the time when the regrowth of the sugar happens is now completely random. In
this case it could happen that sugar regrows in the very first transaction or in the very
last, different in each step, which can be seen as a violation of the model specifications.
Thus we do not run the environment concurrently with the agents but synchronously
after all agents have run.

The experiment setup is the same as in the SIR case study, with the same hardware (see
Table 1), with measurements done under no additional workload using the microbench-
marking library Criterion (O’Sullivan 2014a, b) as well. However, as the Sugarscape
model is stepped using natural numbers we ran each measurement until t = 1000 and
stepped it using �t = 1 . In the experiments we varied the number of agents as well as
the number of cores when running concurrently. We checked the visual outputs and the
dynamics and they look qualitatively the same as the reference Sequential. As in the SIR
case study, a rigorous, statistical comparison of all implementations, to investigate the
effects of concurrency on the dynamics, is quite involved and therefore beyond the focus
of this paper but as a remedy we refer to the use of property-based testing, as shown in
Thaler and Siebers (2019).

Constant agent size

In this experiment we compare the performance of all implementations on varying num-
bers of cores. The results are reported in Table 6 and plotted in Fig. 6.

As expected, the Sequential implementation is the slowest, with TArray being the fast-
est one except on 1 and 2 cores, where unexpectedly the Lock-Based implementation
performed best. Interestingly the TVar implementation was the worst performing one of
the concurrent implementations.

The reason for the bad performance of TVar is that using a TVar to share the envi-
ronment is a very inefficient choice: every write to a cell leads to a retry independent
whether the reading agent reads that changed cell or not, because the data structure can
not distinguish between individual cells. By using a TArray we can avoid the situation
where a write to a cell in a far distant location of the environment will lead to a retry of
an agent which never even touched that cell. The inefficiency of TVar is also reflected in
the fact that the Lock-Based implementation outperforms it on all cores. The sweet spot

Table 6  Performance comparison of Sequential, Lock-Based, TVar and TArray Sugarscape
implementations under varying cores with 50 × 50 environment and 500 initial agents

Best performance indicated in italic

Timings in seconds (lower is better), standard deviation in parentheses

Cores Sequential Lock-Based TVar TArray

1 25.2 (0.36) 21.0 (0.12) 21.1 (0.25) 42.0 (2.20)

2 – 20.0 (0.12) 22.2 (0.21) 24.5 (1.07)

3 – 21.9 (0.19) 23.6 (0.12) 19.7 (1.05)

4 – 24.0 (0.17) 25.2 (0.16) 18.9 (0.58)

5 – 26.7 (0.17) 31.0 (0.24) 20.3 (0.87)

6 – 29.3 (0.57) 35.2 (0.12) 21.2 (1.49)

7 – 30.0 (0.12) 38.7 (0.42) 21.0 (0.41)

8 – 31.2 (0.29) 49.0 (0.41) 21.1 (0.64)

Page 21 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

is in both cases at 3 cores, after which decreasing performance is the result. This is due
to very similar approaches because both operate on the whole environment instead of
only the cells as TArray does. In case of the Lock-Based approach, the lock contention
increases, whereas in the TVar approach, the retries start to dominate (see Table 7).

Interestingly, the performance of the TArray implementation is the worst amongst
all on 1 core. We attribute this to the overhead incurred by STM, which dramatically
adds up in terms of a sequential execution.

Scaling up agents

So far we kept the initial number of agents at 500, which due to the model specifi-
cation, quickly drops and stabilises around 200 due to the carrying capacity of the

Fig. 6  Performance comparison of Sequential, Lock-Based, TVar and TArray Sugarscape implementations on
varying cores with 50 × 50 environment and 500 initial agents

Table 7  Retry ratio comparison (lower is better) of the TVar and TArray Sugarscape
implementations under varying cores with 50 × 50 environment and 500 initial agents

Cores TVar TArray

1 0.00 0.00

2 1.04 0.02

3 2.15 0.04

4 3.20 0.06

5 4.06 0.07

6 5.02 0.09

7 6.09 0.10

8 8.45 0.11

Page 22 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

environment as can be seen in Fig. 5b and which is also described in the book (Epstein
and Axtell 1996) section Carrying Capacity (p. 30).

We now measure the performance of our approaches under increased number of
agents. For this we slightly change the implementation: always when an agent dies it
spawns a new one which is inspired by the ageing and birthing feature of Chapter III
in the book (Epstein and Axtell 1996). This ensures that we keep the number of agents
roughly constant (still fluctuates but doesn’t drop to low levels) over the whole dura-
tion. This ensures a constant load of concurrent agents interacting with each other
and demonstrates also the ability to terminate and fork threads dynamically during
the simulation.

Except for the Sequential approach we ran all experiments with 4 cores. We looked
into the performance of 500, 1000, 1500, 2000 and 2500 (maximum possible capacity
of the 50 × 50 environment). The results are reported in Table 8 and plotted in Fig. 7.

Table 8  Performance comparison of Sequential, Lock-Based, TVar and TArray Sugarscape
implementations with varying agent numbers and 50 × 50 environment on 4 cores
(except Sequential)

Best performance indicated in italic

Timings in seconds (lower is better), standard deviation in parentheses

Agents Sequential Lock-Based TVar TArray

500 70.1 (0.41) 67.9 (0.13) 69.1 (0.34) 25.7 (0.42)

1000 145.0 (0.11) 130.0 (0.28) 136.0 (0.16) 38.8 (1.43)

1500 220.0 (0.14) 183.0 (0.83) 192.0 (0.73) 40.1 (0.25)

2000 213.0 (0.69) 181.0 (0.84) 214.0 (0.53) 49.9 (0.82)

2500 193.0 (0.16) 272.0 (0.81) 147.0 (0.32) 55.2 (1.04)

Fig. 7  Performance comparison of Sequential, Lock-Based, TVar and TArray Sugarscape implementations with
varying agent numbers and 50 × 50 environment on 4 cores (except Sequential)

Page 23 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

As expected, the TArray implementation outperforms all others substantially and
scales up much smother. Also, Lock-Based performs better than the TVar.

What seems to be very surprising is that in the Sequential and TVar cases the per-
formance with 2500 agents is better than the one with 2000 agents. The reason for this
is that in the case of 2500 agents, an agent can’t move anywhere because all cells are
already occupied. In this case the agent won’t rank the cells in order of their payoff (max
sugar) to move to but just stays where it is. We hypothesize that due to Haskells laziness
the agents actually never look at the content of the cells in this case but only the number
which means that the cells themselves are never evaluated which further increases per-
formance. This leads to the better performance in case of Sequential and TVar because
both exploit laziness. In the case of the Lock-Based approach we still arrive at a lower
performance because the limiting factor are the unconditional locks. In the case of the
TArray approach we also arrive at a lower performance because it seems that STM per-
form reads on the neighbouring cells which are not subject to lazy evaluation.

In case of the Sequential implementation with 2000 agents we also arrive at a better
performance than with 1500, due to less space of the agents for free movement, exploit-
ing laziness as in the case with 2500 agents. In the case of the Lock-Based approach we
see similar behaviour, where the performance with 2000 agents is better than with 1500.
It is not quite clear why this is the case, given the dramatically lower performance with
2500 agents but it seems that 2000 agents create much less lock contention due to lower
free space, whereas 2500 agents create a lot more lock contention due to no free space
available at all.

We also measured the average retries both for TVar and TArray under 2500 agents
where the TArray approach shows best scaling performance with 0.01 retries whereas
TVar averages at 3.28 retries. Again this can be attributed to the better transactional
data structure which reduces retry ratio substantially to near-zero levels.

Going large‑scale

To test how far we can scale up the number of cores in the TArray case, we ran the two
experiments, carrying capacity (500 agents) and rebirthing (2500 agents), on an Amazon
EC m5ad.16xlarge instance with 16, 32 and 64 cores to see if we run into decreasing
returns. The results are reported in Table 9.

Unlike in the SIR model, Sugarscapes STM TArray implementation does not scale up
beyond 16 cores. We attribute this to a mix of retries and Amdahl’s law. As retries are
much more expensive in the case of Sugarscape compared to SIR, even a small increase
in the retry ratio (see Table 7), leads to reduced performance. On the other hand,

Table 9  Sugarscape TArray performance on 16, 32 and 64 cores an Amazon EC
m5ad.16xlarge instance

Timings in seconds (lower is better). Retry ratios in parentheses

Cores Carrying capacity Rebirthing

16 11.9 (0.21) 46.6 (0.07)

32 12.8 (0.29) 76.4 (0.01)

64 14.6 (0.09) 99.1 (0.01)

Page 24 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

although the retry ratio decreases as the number of cores increases, the ratio of parallel-
isable work diminishes and we get bound by the sequential part of the program.

Comparison with other approaches

The paper (Lysenko and D’Souza 2008) reports a performance of 2000 steps per second
on a GPU on a 128 × 128 grid. Our best performing implementation, TArray with 500
rebirthing agents, arrives at a performance of 39 steps per second and is therefore clearly
slower. However, the very high performance on the GPU does not concern us here as it
follows a very different approach than ours. We focus on speeding up implementations
on the CPU as directly as possible without locking overhead. When following a GPU
approach one needs to map the model to the GPU which is a delicate and non-trivial
matter. With our approach we show that speed up with concurrency is very possible
without the low-level locking details or the need to map to GPU. Also some features like
bilateral trading between agents, where a pair of agents needs to come to a conclusion
over multiple synchronous steps, is difficult to implement on a GPU whereas this should
be not as hard using STM.

Note that we kept the grid size constant because we implemented the environment as
a single agent which works sequentially on the cells to regrow the sugar. Obviously this
doesn’t really scale up on parallel hardware and experiments which we haven’t included
here due to lack of space, show that the performance goes down dramatically when we
increase the environment to 128 × 128 with same number of agents. This is the result
of Amdahl’s law where the environment becomes the limiting sequential factor of the
simulation. Depending on the underlying data structure used for the environment we
have two options to solve this problem. In the case of the Sequential and TVar imple-
mentation we build on an indexed array, which can be updated in parallel using the
existing data-parallel support in Haskell. In the case of the TArray approach we have no
option but to run the update of every cell within its own thread. We leave both for fur-
ther research as it is beyond the scope of this paper.

Summary

This case study showed clearly that besides being substantially faster than the Sequential
implementation, an STM implementation with the right transactional data structure is
also able to perform considerably better than a Lock-Based approach even in the case of
the Sugarscape model which has a much higher complexity in terms of agent behaviour
and dramatically increased number of writes to the environment.

Further, this case study demonstrated that the selection of the right transactional data
structure is of fundamental importance when using STM. Selecting the right transac-
tional data structure is highly model-specific and can lead to dramatically different per-
formance results. In this case study the TArray performed best due to many writes but
in the SIR case study a TVar showed good enough results due to the very low number of
writes. When not carefully selecting the right transactional data structure, which sup-
ports fine-grained concurrency, a lock-based implementation might perform as well or
even outperform the STM approach as can be seen when using the TVar.

Page 25 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

Although the TArray is the better transactional data structure overall, it might come
with an overhead, performing worse on low number of cores than a TVar, Lock-Based
or even Sequential approach, as seen with TArray on 1 core. However, it has the benefit
of quickly scaling up to multiple cores. Depending on the transactional data structure,
scaling up to multiple cores hits a limit at some point. In the case of the TVar the best
performance is reached with 3 cores. With the TArray we reached this limit around 16
cores.

The comparison between the Lock-Based approach and the TArray implementation
seems to be a bit unfair due to a very different locking structure. A more suitable com-
parison would be to use an indexed Array with a tuple of (MVar, IORef), holding a
synchronisation primitive and reference for each cell to support fine-grained locking on
the cell level. This would seem to be a more just comparison to the TArray where fine-
grained transactions happen on the cell level. However, due to the model semantics, this
approach is actually not possible. As already expressed in the experiments description,
in Sugarscape an agent needs a consistent view of the whole environment for the whole
duration of an agent execution due to the fact that agents don’t only write their own
locations but change also other locations. If we would use an indexed array we would
also run into data races because the agents need to hold all relevant cells, which can’t be
grabbed in one atomic instruction but only one after another, which makes it highly sus-
ceptible to data races. Therefore, we could run into deadlocks if two agents are acquiring
locks because they are taken after another and therefore subject to races where they end
up holding a lock the other needs.

Conclusion
In this paper we investigated the potential of using STM for parallel, large scale ABS
and come to the conclusion that it is indeed a very promising alternative over lock-
based approaches as our case studies have shown. The STM implementations all con-
sistently outperformed the lock-based ones and scaled much better to larger number of
CPU cores. Besides, the concurrency abstractions of STM are very powerful, yet simple
enough to allow convenient implementation of concurrent agents without the problems
of lock-based implementation. Due to most ABS being primarily pure computations,
which do not need interactive input from the user, files or network during simulation,
the fact that no such interactions can occur within an agent when running within STM
is not a problem.

Further, STM primitives map nicely to ABS concepts. When having a shared environ-
ment, it is natural either using TVar or TArray, depending on the environments nature.
Also, there exists the TChan primitive, which can be seen as a persistent message box
for agents, underlining the message-oriented approach found in many agent-based mod-
els (Agha 1986; Wooldridge 2009). Also TChan offers a broadcast transactional channel,
which supports broadcasting to listeners which maps nicely to a proactive environment
or a central auctioneer upon which agents need to synchronize. The benefits of these
natural mappings are that using STM takes a big portion of burden from the modeller as
one can think in STM primitives instead of low level locks and concurrent operational
details.

Page 26 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

The strong static type system of Haskell adds another benefit. By running in the STM
instead of IO context makes the concurrent nature more explicit and at the same time
restricts it to purely STM behaviour. So despite obviously losing the reproducibility
property due to concurrency, we still can guarantee that the agents can’t do arbitrary IO
as they are restricted to STM operations only.

Depending on the nature of the transactions, retries could become a bottle neck,
resulting in a live lock in extreme cases. The central problem of STM is to keep the
retries low, which is directly influenced by the read/writes on the STM primitives. By
choosing more fine-grained and suitable data structures, for example using a TArray
instead of an indexed array within a TVar, one can reduce retries and increase perfor-
mance significantly and avoid the problem of live locks as we have shown.

Despite the indisputable benefits of using STM within a pure functional setting like
Haskell, it exists also in other imperative languages (Python, Java and C++, etc) and
we hope that our research sparks interest in the use of STM in ABS in general and that
other researchers pick up the idea and apply it to the established imperative languages
Python, Java, C++ in the ABS community as well.

Further research
So far we only implemented a tiny bit of the Sugarscape model and left out the later
chapters which are more involved as they incorporate direct synchronous communi-
cation between agents. Such mechanisms are very difficult to approach in GPU based
approaches (Lysenko and D’Souza 2008) but should be quite straightforward in STM
using TChan and retries. However, we have yet to prove how to implement reliable syn-
chronous agent interactions without deadlocks in STM. It might be very well the case
that a truly concurrent approach is doomed due to the following (Marlow 2013) (Chap-
ter 10. Software Transactional Memory, What Can We Not Do with STM?): “In general,
the class of operations that STM cannot express are those that involve multi-way commu-
nication between threads. The simplest example is a synchronous channel, in which both
the reader and the writer must be present simultaneously for the operation to go ahead.
We cannot implement this in STM, at least compositionally [..]: the operations need to
block and have a visible effect – advertise that there is a blocked thread – simultaneously.”.

A drawback of STM is that it is not fair because all threads, which block on a transac-
tional primitive, have to be woken up upon a change of the primitive, thus a FIFO guar-
antee cannot be given. We hypothesise that for most models, where the STM approach
is applicable, this has no qualitative influence on the dynamics as agents are assumed
to act conceptually at the same time and no fairness is needed. We leave the test of this
hypothesis for future research. This is connected to our assumption that concurrent exe-
cution has no qualitative influence on the dynamics. Although repeated runs with same
initial conditions might lead to different results due to nondeterminism, the dynamics
follow still the same distribution as the one from the sequential implementation. To ver-
ify this we can make use the techniques of property-based testing as shown in Thaler
and Siebers (2019) but we leave it for further research.

Page 27 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

Abbreviations
ABS: Agent Based Simulation; STM: Software Transactional Memory; PDES: Parallel Discrete Event Simulation.

Acknowledgements
The authors would like to thank J. Hey and M. Handley for constructive feedback, comments and valuable discussions.

Authors’ contributions
JT initiated the idea and the research, did the implementation, experiments, performance measurements, and writing.
POS supervised the work, gave feedback and supported the writing process. Both authors read and approved the final
manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable
request.

Competing interests
The authors declare that they have no competing interests.

Received: 5 November 2019 Accepted: 13 December 2019

References
Abar S, Theodoropoulos GK, Lemarinier P, O’Hare GMP (2017) Agent based modelling and simulation tools: a review of

the state-of-art software. Comput Sci Rev 24:13–33
Agha G (1986) Actors: a model of concurrent computation in distributed systems. MIT Press, Cambridge
Bezirgiannis N (2013) Improving performance of simulation software using Haskells concurrency & parallelism. Ph.D.

Thesis, Utrecht University - Dept. of Information and Computing Sciences
Breitner J (2019) stm-stats library. http://hacka​ge.haske​ll.org/packa​ge/stm-stats​. http://hacka​ge.haske​ll.org/packa​ge/

stm-stats​. Accessed 4 Dec 2019
Cicirelli F, Giordano A, Nigro L (2015) Efficient environment management for distributed simulation of large-scale situated

multi-agent systems. Concurr Comput Pract Exp 27(3):610–632. https​://doi.org/10.1002/cpe.3254
Discolo A, Harris T, Marlow S, Jones SP, Singh S (2006) Lock free data structures using STM in Haskell. In: Proceedings of

the 8th international conference on functional and logic programming. FLOPS’06. Springer, Berlin, pp 65–80. https​
://doi.org/10.1007/11737​414_6

Enns RH (2010) It’s a nonlinear world, 1st edn. Springer Publishing Company, Incorporated, New York
Epstein JM, Axtell R (1996) Growing artificial societies: social science from the bottom up. The Brookings Institution,

Washington
Gasser L, Kakugawa K (2002) MACE3J: Fast flexible distributed simulation of large, large-grain multi-agent systems. In: Pro‑

ceedings of the first international joint conference on autonomous agents and multiagent systems: part 2. AAMAS
’02. New York: ACM, pp 745–752. Event-place, Bologna. https​://doi.org/10.1145/54486​2.54491​8

Gorur BK, Imre K, Oguztuzun H, Yilmaz L (2016) Repast HPC with optimistic time management. In: Proceedings of the
24th high performance computing symposium. HPC ’16. Society for Computer Simulation International, San Diego,
pp 4:1–4:9. Event-place, Pasadena. https​://doi.org/10.22360​/Sprin​gSim.2016.HPC.046

Harris T, Peyton Jones S (2006) Transactional memory with data invariants. In: First ACM SIGPLAN workshop on languages,
compilers, and hardware support for transactional computing (TRANSACT’06). https​://www.micro​soft.com/en-us/
resea​rch/publi​catio​n/trans​actio​nal-memor​y-data-invar​iants​/. Accessed 4 Dec 2019

Harris T, Marlow S, Peyton-Jones S, Herlihy M (2005) Composable memory transactions. In: Proceedings of the tenth ACM
SIGPLAN symposium on principles and practice of parallel programming. PPoPP ’05. ACM, New York, pp 48–60.
https​://doi.org/10.1145/10659​44.10659​52

Hay J, Wilsey PA (2015) Experiments with hardware-based transactional memory in parallel simulation. In: Proceedings of
the 3rd ACM SIGSIM conference on principles of advanced discrete simulation. SIGSIM PADS ’15. ACM, New York, pp
75–86. Event-place, London. https​://doi.org/10.1145/27694​58.27694​62

Himmelspach J, Uhrmacher AM (2007) Plug’n simulate. In: 40th annual simulation symposium (ANSS’07), pp 137–143.
ISSN: 1080-241X

Hudak P, Hughes J, Peyton Jones S, Wadler P (2007) A history of Haskell: being lazy with class. In: Proceedings of the third
ACM SIGPLAN conference on history of programming languages. HOPL III. ACM, New York, pp 12-1–12-55. https​://
doi.org/10.1145/12388​44.12388​56

Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond A Math
Phys Eng Sci 115(772):700–721

Lees M, Logan B, Theodoropoulos G (2008) Using access patterns to analyze the performance of optimistic synchroniza‑
tion algorithms in simulations of MAS. Simulation 84(10–11):481–492. https​://doi.org/10.1177/00375​49708​09669​1

libraries@haskell.org. array: mutable and immutable arrays; 2019. http://hacka​ge.haske​ll.org/packa​ge/array​. Accessed 4
Dec 2019

Logan B, Theodoropoulos G (2001) The distributed simulation of multiagent systems. Proc IEEE 89(2):174–185
Lysenko M, D’Souza RM (2008) A framework for megascale agent based model simulations on graphics processing units.

J Artif Soc Soc Simul 11(4):10

http://hackage.haskell.org/package/stm-stats
http://hackage.haskell.org/package/stm-stats
http://hackage.haskell.org/package/stm-stats
https://doi.org/10.1002/cpe.3254
https://doi.org/10.1007/11737414_6
https://doi.org/10.1007/11737414_6
https://doi.org/10.1145/544862.544918
https://doi.org/10.22360/SpringSim.2016.HPC.046
https://www.microsoft.com/en-us/research/publication/transactional-memory-data-invariants/
https://www.microsoft.com/en-us/research/publication/transactional-memory-data-invariants/
https://doi.org/10.1145/1065944.1065952
https://doi.org/10.1145/2769458.2769462
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1177/0037549708096691
http://hackage.haskell.org/package/array

Page 28 of 28Thaler and Siebers ﻿Complex Adapt Syst Model (2019) 7:5

Macal CM (2010) To agent-based simulation from system dynamics. In: Proceedings of the winter simulation conference.
WSC ’10. Winter simulation conference, Baltimore; 2010, pp 371–382. http://dl.acm.org/citat​ion.cfm?id=24335​
08.24335​51. Accessed 4 Dec 2019

Macal CM (2016) Everything you need to know about agent-based modelling and simulation. J Simul 10(2):144–156
Marlow S (2013) Parallel and concurrent programming in Haskell. O’Reilly; Google-Books-ID: k0W6AQAACAAJ
Marlow S, Peyton Jones S, Singh S (2009) Runtime support for multicore Haskell. In: Proceedings of the 14th ACM

SIGPLAN international conference on functional programming. ICFP ’09. ACM, New York, pp 65–78. https​://doi.
org/10.1145/15965​50.15965​63

Meyer R (2014) Event-driven multi-agent simulation. Multi-agent-based simulation XV. Lecture notes in computer sci‑
ence. Springer, Cham, pp 3–16

Minson R, Theodoropoulos GK (2008) Distributing RePast agent-based simulations with HLA. Concurr Comput Pract Exp
20(10):1225–1256

O’Sullivan B (2014a) Citerion: a Haskell microbenchmarking library; 2014. http://www.serpe​ntine​.com/crite​rion/.
Accessed 4 Dec 2019

O’Sullivan B (2014b) Criterion robust, reliable performance measurement and analysis; 2014b. http://hacka​ge.haske​ll.org/
packa​ge/crite​rion. Accessed 4 Dec 2019

Perfumo C, Sönmez N, Stipic S, Unsal O, Cristal A, Harris T, et al (2008) The limits of software transactional memory (STM):
dissecting Haskell STM applications on a many-core environment. In: Proceedings of the 5th conference on com‑
puting frontiers. CF ’08. ACM, New York, pp 67–78. https​://doi.org/10.1145/13662​30.13662​41

Riley PF, Riley GF (2003) Next generation modeling III—agents: Spades—a distributed agent simulation environment
with software-in-the-loop Execution. In: Proceedings of the 35th conference on winter simulation: driving innova‑
tion. WSC ’03. Winter simulation conference; pp 817–825. Event-place, New Orleans. http://dl.acm.org/citat​ion.
cfm?id=10308​18.10309​26. Accessed 4 Dec 2019

Shavit N, Touitou D (1995) Software transactional memory. In: Proceedings of the fourteenth annual ACM symposium on
principles of distributed computing. PODC ’95. ACM, New York, pp 204–213. https​://doi.org/10.1145/22496​4.22498​7

Suryanarayanan V, Theodoropoulos G (2013) Synchronised range queries in distributed simulations of multiagent sys‑
tems. ACM Trans Model Comput Simul 23(4):25:1–25:25. https​://doi.org/10.1145/25174​49

Suryanarayanan V, Theodoropoulos G, Lees M (2013) PDES-MAS: distributed simulation of multi-agent systems. Procedia
Comput Sci 18:671–681

Thaler J (2019a) Repository of STM implementations of the agent-based SIR model in Haskell. https​://githu​b.com/thale​
rjona​than/haske​ll-stm-sir. Accessed 4 Dec 2019

Thaler J (2019b) Repository of STM implementations of the Sugarscape model in Haskell. https​://githu​b.com/thale​rjona​
than/haske​ll-stm-sugar​scape​. Accessed 4 Dec 2019

Thaler J, Siebers PO (2017) The Art Of Iterating: update-strategies in agent-based. Springer proceedings in complexity.
Springer International Publishing, Dublin. https​://www.sprin​ger.com/gp/book/97830​30302​979. Accessed 4 Dec
2019

Thaler J, Siebers PO (2019) Show me your properties: the potential of property-based testing in agent-based simulation.
In: Proceedings of the 2019 summer simulation conference. SummerSim ’19. Society for Computer Simulation Inter‑
national, San Diego, pp 1:1–1:12. http://dl.acm.org/citat​ion.cfm?id=33741​38.33741​39. Accessed 4 Dec 2019

Thaler J, Altenkirch T, Siebers PO (2018) Pure functional epidemics: an agent-based approach. In: Proceedings of the 30th
symposium on implementation and application of functional languages. ACM, IFL New York; 2018, pp 1–12. Event-
place, Lowell. https​://doi.org/10.1145/33102​32.33103​72

van Dijk B, van Dijk J (2019) concurrent-extra library; 2018. http://hacka​ge.haske​ll.org/packa​ge/concu​rrent​-extra​.
Accessed 4 Dec 2019

Wilensky U, Rand W (2015) An introduction to agent-based modeling: modeling natural, social, and engineered complex
systems with NETLogo. MIT Press. https​://www.amazo​n.co.uk/Intro​ducti​on-Agent​-Based​-Model​ing-Natur​al-Engin​
eered​/dp/02627​31894​. Accessed 4 Dec 2019

Wooldridge M (2009) An introduction to multiagent systems, 2nd edn. Wiley, Hoboken

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://dl.acm.org/citation.cfm?id=2433508.2433551
http://dl.acm.org/citation.cfm?id=2433508.2433551
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/1596550.1596563
http://www.serpentine.com/criterion/
http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion
https://doi.org/10.1145/1366230.1366241
http://dl.acm.org/citation.cfm?id=1030818.1030926
http://dl.acm.org/citation.cfm?id=1030818.1030926
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/2517449
https://github.com/thalerjonathan/haskell-stm-sir
https://github.com/thalerjonathan/haskell-stm-sir
https://github.com/thalerjonathan/haskell-stm-sugarscape
https://github.com/thalerjonathan/haskell-stm-sugarscape
https://www.springer.com/gp/book/9783030302979
http://dl.acm.org/citation.cfm?id=3374138.3374139
https://doi.org/10.1145/3310232.3310372
http://hackage.haskell.org/package/concurrent-extra
https://www.amazon.co.uk/Introduction-Agent-Based-Modeling-Natural-Engineered/dp/0262731894
https://www.amazon.co.uk/Introduction-Agent-Based-Modeling-Natural-Engineered/dp/0262731894

	A tale of lock-free agents: towards Software Transactional Memory in parallel Agent-Based Simulation
	Abstract
	Introduction
	Background
	Software Transactional Memory
	Parallelism, concurrency and software transactional memory in Haskell
	Side effects
	Parallelism and concurrency
	Software Transactional Memory
	STM examples

	Software Transactional Memory in Agent-Based Simulation
	Adding STM to agents

	Case study 1: spatial SIR model
	Experiment design
	Constant grid size, varying cores
	Varying grid size, constant cores
	Retries
	Going large-scale
	Summary

	Case study 2: SugarScape
	Experiment design
	Constant agent size
	Scaling up agents
	Going large-scale
	Comparison with other approaches
	Summary

	Conclusion
	Further research
	Acknowledgements
	References

