
Formal approach to model complex
adaptive computing systems
Abdessamad Jarrar1*  , Abderrahim Ait Wakrime2  and Youssef Balouki1 

Introduction
Developing computer systems that benefit from complex adaptive systems concepts is
a significant and challenging task in the context of computer science engineering. The
development of such a system will allow its elements to interact, react, adapt and even
evolve autonomously (Kharchenko et al. 2017). The implementation of these capabili-
ties correctly will make the dream of making computers more independent and intel-
ligent than human come true. However, the achievement of this dream is constrained by
hardware and software limits as well as the safety requirements. For example, develop-
ing robots that can serve humans should be performed while taking into consideration
the capability of analysing the surrounding environment and commands understand-
ing besides the safety of the served human (Siciliano and Khatib 2019). The first step to

Abstract 

Complex adaptive systems provide a significant number of concepts such as reac-
tion, interaction, adaptation, and evolution. In general, these concepts are modelled
employing different techniques which give an inexplicit vision on the system. There-
fore, all concepts must be carefully modelled using the same approach to avoid
contradiction and guarantee system homogeneity and correctness. However, devel-
oping a computing system that includes all these concepts using the same approach
is not an easy task and requires a perfect understanding of the system’s behaviour. In
this paper, we contribute as stepwise towards proposing an approach to model the
most important concepts of complex adaptive systems while ensuring homogene-
ity and the correctness of models. For this aim, we present five standard agent-based
models formalizing agent properties, reaction, interaction, adaptation, and evolution.
These models are adapted to all cases of complex adaptive systems since they include
an abstract description of these concepts. To implement our approach formally, we
choose the Event-B method due to the strong assurance of bugs’ absence that it
guarantees. Besides, it supports horizontal and vertical refinement which facilitates
the specification process. Furthermore, the approach of this paper addresses the very
abstract level of modelling which expand the use of this approach to other formal
methods and tools.

Keywords:  Formal methods, Complex adaptive systems, Event-B, Agent, Interaction,
Reaction, Evolution, Adaptation

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Jarrar et al. Complex Adapt Syst Model (2020) 8:3
https://doi.org/10.1186/s40294-020-0069-7

*Correspondence:
Abdessamad.jarrar@gmail.
com
1 Faculty of Sciences
and Technologies of Settat,
Informatics Imaging
and Modeling of Complex
Systems Laboratory,
University Hassan First, Settat,
Morocco
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-8792-7014
http://orcid.org/0000-0001-9215-6309
http://orcid.org/0000-0003-0713-5613
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40294-020-0069-7&domain=pdf

Page 2 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

implementing complex adaptive systems is modelling it correctly to deal with its com-
plexity and avoid failures. One of the most powerful design tools in computer engineer-
ing is formal methods based on theorem-proving due to their strong assurance of bugs’
absence.

In this paper, we present an approach to develop correctly a complex adaptive sys-
tem formal model while ensuring homogeneity and correctness. In particular, we focus
on developing a standard model that plays the role of a starting point in the process of
developing any complex adaptive system. This model includes the essential concepts of
complex adaptive systems that can be enriched by adding detail depending on the typi-
cal requirements of the system.

Formal methods are techniques based on the mathematical language used for specify-
ing and verifying systems. Utilization of formal techniques can extraordinarily expand
our comprehension of the system by uncovering inconsistencies, ambiguities, and defi-
ciency that may be harder to detect using standard methods. The formal method used
for system-level modelling and analysis is Event-B, which is based on set theory nota-
tion. Event-B uses refinement to represent the different abstraction levels of the system
while performing proofs to guarantee consistency of refinements. This method has been
effectively used in different systems where no bugs were detected. For instance, the driv-
erless meteor in Paris worked correctly and no bugs were identified after the theoretical
proofs, neither at the functional approval (Boudi et al. 2019). This achievement encour-
ages Alstom and Siemens Transportation Systems to use this method to develop future
metros (Vistbakka and Troubitsyna 2018). In addition, several approaches have been
proposed that use Event-B to provide a correct system (Wakrime et al. 2018a, b). There-
fore, we also used Event-B to develop the concepts presented in this paper.

In many works, researchers tried to apply formal methods to verify the correctness of
complex systems where they applied different concepts such as the process algebra CSP
(Bartels and Kleine 2011), SOTA (Abeywickrama and Zambonelli 2012), MAPE-K (Igle-
sia and Weyns 2015), SMARTOS (Giese 2016), and LTL (Sadraddini and Belta 2017). In
these works, researchers proved that the application of formal methods highly improve
the security and correctness of complex systems. Unlike all these works that presents
ready-made formal models, the correct-by-construction approach proposed in this work
presents a systematic way that guides engineers in using a formal method to develop
any complex adaptive system. Furthermore, this approach uses the basics of first-order
predicate logic and set theory which make it easy and convenient for users of different
scientific backgrounds.

In order to illustrate the proposed approach, we present a case study of modeling an
air traffic control system as a complex adaptive system. The presented approach is a
generalization of the proposed one in our previous work (Jarrar and Balouki 2018). The
previous work deals with the application of Event-B to verify and analyze an air traffic
control system; whereas, this work present a more general approach that can be applied
in the case of any complex adaptive system.

The rest of the paper is structured as follows. Section 2 presents the state of art, related
works, and we give some background on formal methods and validation tools used in
this paper. In Sect. 3, we give a summary of the proposed approach in 5 steps, after that,
we present the main contribution in term of a methodology for modeling each concept

Page 3 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

of a Complex Adaptive System: agent, reaction, interaction, evolution, and adaptation.
In Sect. 4, we illustrate the use of our approach through a case studied of an air traffic
control system ATC. Section 5 focuses on the validation and verification of the model
generated in the case study to ensure the validity of our approach. Finally, we conclude
in Sect. 6.

Background
In this section, we specify the technical terms and concepts related to the complex adap-
tive systems and formal method Event-B. In addition, we introduce the related works to
position our contribution.

Complex adaptive systems

Nowadays, computing systems are becoming more and more complex and adaptive
through the inspiration of concepts from the natural complex adaptive systems. Many
concepts were inspired when observing systems such as social insect colonies, embryo
development as well as the immune system. On the other hand, many other systems in
nature such as the biosphere and the human brain are tried to be simulated as com-
plex adaptive systems. Furthermore, the human being, the stock exchange, the business
world, the social group are also considered of the complex adaptive systems.

Recently, the scientific community has opted for an adaptive approach to the devel-
opment of computing systems. The integration of this approach provides a set of ben-
efits such as autonomous adaptation and evolution of the system elements called agents.
Adaptation of an agent is based on detecting the existence of a problem occurred due
to environmental change and then trying to adopt a suitable strategy to avoid chaos.
Whereas evolution relies on the control of the state of the system to identify the behav-
iours of the components that allow the system to evolve and strengthen it and at the
same time impoverishing the behaviour that negatively influences evolution. Figure 1
bellows gives an overview of the complex adaptive system structure:

Formal method: Event‑B

To overcome the high risk of failure in complex systems, it is extremely important to
perform preliminary modeling based on a certain theory. The main purpose of these
theories is explaining, predicting, and understanding some characteristics of the system
before construction. These theories are used in different field of science such as Max-
well’s equations in electrical engineering and theory of material’s strength in civil engi-
neering. In computer engineering, formal methods are less considered, therefore, there
are engineers who do not know any theory building computing systems (Clayton and
Radcliffe 2018). These systems often have bugs that may cost millions to fix. Hence, the
use of formal methods is highly recommended for verifying and specifying software in
order to highly guarantee bugs’ absence.

Event-B is a system-level modelling formal method that provides a set of features such
as analysis and the correct-by-construct approach performed by theorem proving (Vist-
bakka and Troubitsyna 2018; Abrial 2010). Modelling in Event-B is introduced as a set
of successive models that are made of two parts: Context (the static part) and Machine
(the dynamic part). The context includes the definition of carried sets, constants, and

Page 4 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

axioms. The machine is made up of variables that describe the state of the systems. The
states of the systems are constrained by mathematical formulas called invariants. The
states transitions are performed by events. The events are made up of actions that are
the elementary operation allowing the change of variables values. The events may have
some necessary conditions to trigger, these conditions are called guards.

Event-B supports a very practical technique of modelling, which is refinement. Refine-
ment relies on creating an abstract model including the basic elements of the system;
after that, more details are added to build successive models that are more and more
concrete. This technique makes modelling easier than trying to model the whole system
at once, we focus on a limited number of requirement in each step under the condition
of cleverly choose the refinement strategy. Figure 2 below illuminates of the process of
this modelling process:

In order to guarantees the well-performance of this process, a set of proofs called
proof obligations should be discharged. These proofs ensure the consistency of mod-
els and the invariant preservations as well as the non-contradiction of refinements. The
most important proof among these is the invariant preservation which guarantees that
all events preserve a certain invariant. More formally, let I a certain invariant, A refers to
the set of axioms, c refers to constants, while s are the carried sets, v and v’ are respec-
tively the before and after values of variables. The invariant preservation proof is formal-
ized in (1).

Almost all proofs are discharged automatically using an eclipse based platform called
Rodin (2017). In the case of other few ones, a set of predicates may be added to guide the
interactive prover.

(1)A(c, s) ∧ I(v, c, s)⊢I
′(

v′, c, s
)

Fig. 1  Structure of complex adaptive systems

Page 5 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Related works

Recent works about complex adaptive systems

Given the complexity that can be increased explosively of this kind of systems compared
to the increase in the number of components, their engineering must be carried out with
great attention to minimize the error rate and avoid the chaos that these errors may gen-
erate. The majority of these errors are caused by issues related to the design phase and
the use of standard methods to develop such complex systems.

To overcome these problems, many works addressed methods to model and study the
behaviour of these systems before the construction phase. The most used approach to
model an Adaptive Complex System is that of agent-based modeling. This approach has
been defined by Volker (Grimm et al. 2005) as a class of computer models for simulat-
ing the actions and interactions of autonomous agents (individual or collective entities
such as organizations or groups) to evaluate their effects on the environment system as
a whole. It combines elements of game theory, complex systems, emergence, computer
sociology, multi-agent systems and evolutionary programming. Monte Carlo methods
are used to introduce chance.

This method has been used in many works to simulate the behaviour of different sys-
tems such as the retail electrical energy markets with demand response (Dehghanpour
et al. 2018), urban crimes development (Groff et al. 2019), and the emergence of bio-
jet fuel supply chain in Brazil (Moncada et al. 2019). These works present a graphical
and numerical result of a simple agent-based modelling simulation performed through
mathematical models. However, the verification of complex behaviour is constrained by
the performance of the machine used for simulation and still always test for finite states;
therefore, the verification does not perfectly ensure the absence of failures.

Fig. 2  Process of modelling

Page 6 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Formal methods for complex adaptive systems

The use of formal methods in the development of complex systems is highly recom-
mended due to the high assurance of bugs’ absence that they provide. However, in order
to use them, a very clear understanding of the system behaviour is a requirement which
makes their use in the case of Complex Adaptive Systems a difficult task. Therefore, only
a few works attempt to use formal methods in order to model and verify complex adap-
tive system. The authors of Bartels and Kleine (2011) study the specification and verifica-
tion of adaptive systems seen as a subclass of reactive systems using the process algebra
CSP. This allows them to use a set CSP tools for the verification such as CSP-Prover and
ProB. They also introduce an approach for the implantation of a specified system. In
Abeywickrama and Zambonelli (2012) DB Abeywickrama and al. present Model Check-
ing Goal-Oriented Requirements for Self-Adaptive Systems. To this end, authors show
how to perform a goal-level model checking analysis of complex adaptive systems by
SOTA (State of the Affairs) as a general goal-oriented modelling framework. The effec-
tiveness of their method is exposed by transforming the conceptual SOTA model into an
operational one. On the other hand, Christopher and al give an overview in Rouff et al.
(2012) of an approach for the verification of adaptive software systems. This approach
is a result of the combination of different fields of science: stabilization science, high-
performance computing simulations, compositional verification and traditional verifi-
cation techniques, and operational monitors. In Iglesia and Weyns (2015), the authors
propose a promising approach to handle designing software systems that have to deal
with dynamic operating conditions through self-adaptive dynamic realized by a MAPE-
K (Monitor-Analyze-Plan-Execute plus Knowledge). They validate their approach using
formal specified MAPE-K templates that encode design expertise for a family of self-
adaptive systems. Authors of Giese (2016) also present formal models and analysis for
self-adaptive cyber-physical systems. They analyze the challenges face self-adaptive
cyber-physical systems and outline their results through a generic approach based on
extensions of graph transformations systems called SMARTOS. Sadraddini and Belta
(2017) is considered as one of the latest work in this domain in which authors use for-
mal methods for adaptive control of dynamical systems. They develop a method to con-
trol discrete-time systems with initially unknown parameters from LTL (linear temporal
logic) specifications. They also show how to compute adaptive control strategies for
finite and infinite systems using formal methods.

Another approach has been presented by Niazi and Hussain (2010), authors proposed
a formal agent-based simulation framework (FABS). This framework is based on formal
specification to describe wireless sensor networks used for sensing the environment of
complex adaptive system. The approach is applied to a boids model of self-organized
flocking of animals monitored by a random deployment of proximity sensors. Zafar
(2016) presented a formal specification of take-off procedure using Vienna Develop-
ment Method-Specification Language VDM-SL complex adaptive systems modeling in
order to overcome communication failures that cause delays and collisions. The pre-
sented model is developed by a series of refinements and made up of (i) a static part
that includes the graph-based model, aircrafts, controllers, taxiways and runways,
whereas, (ii) the dynamic part describe the take-off algorithms. The same formal method
along with the graph theory is used for modeling wireless sensor and actors networks

Page 7 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

(WSANs) earthquake disaster mitigation and management system by Zafar et al. in
Zafar and Afzaal (2017). Although these approaches are formally well presented, still
these work are ‘ad-hoc’ for specific cases of complex adaptive systems and wireless sen-
sor networks. On the other hand, our approach is a more general and can be applied in
any case of complex adaptive system modeling and it is independent of the used technol-
ogy which extend its applicability.

Unlike all the works presented in this section that presents ready-made formal mod-
els, our approach presents a systematic standards way to guide in generating of formal
models while guaranteeing the homogeneity of models and the use of basic mathemati-
cal concepts. For this study, we use a formal method called Event-B that present a set of
tools that can be used for the verification of models such as proof obligations and model
checking through animation. These tools ensure the correctness of models and thus the
resulting implemented system is correct by construction.

Proposed approach
The purpose of this section is to present our contributions namely formal approach to
model complex adaptive computing systems using Event-B.

Summary of approach

Our approach is as follow:

1.	 Filtering the desired concepts needed in the case study. During this stage we specify
among the possible concepts those which interest us (reaction, interaction, adapta-
tion, and evolution).

2.	 Filtering and formalizing the related requirements from the requirement document.
These requirements will be inserted in step 4.

3.	 Adapt the standard model with the system requirements by renaming the elements
of the model and adding appropriate properties and types. This step will generate
and an abstract typical initial model.

4.	 Refine the model as much as needed by formalizing and adding the remaining typi-
cal requirements as well as the establishment of proof obligations. At the end of this
step, we get a typical concrete model.

5.	 Construct the system according to the concrete typical model which will be guaran-
teed to be correct by construction.

Figure 3 below illustrates the outlines of the proposed approach:

Formal approach to model complex adaptive computing systems using Event‑B

Agent

Agents can be defined as the smallest elements of a complex adaptive system, these
agents have the capability to interact with each other in order to adapt, evolve and solve
problems (Niazi 2017). The main purpose of the use of agents is that they can act sepa-
rately and independently as well as the ability to add and remove easily agents without
stopping the system. Thus, we propose the following Definition 1 for an agent:

Page 8 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Definition 1  An agent is the smallest element of a complex adaptive system that can
act independently.

These agents are defined using a set of properties such as types and strategies that deter-
mine their behaviour in certain circumstances. Although these properties may seem very
simple, the significant number of agents in the same CAS beside the variety of their proper-
ties arise explosively the difficulty of predicting system behaviour. Also, a simple change of
a single property of a certain agent may cause a completely new complex and potentially
novel behaviours of the system. Therefore, properly defining the agents and their properties
is the most critical part of modelling a complex adaptive system (Akram and Niazi 2018).

For this purpose, we start with the following simple formalization shown in Listing 1 and
2 that captures the agents’ main properties:

Fig. 3  Proposed approach

Page 9 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

MACHINE

…

INVARIANTS

Inv : Agent ∈ AGENTS

Inv : Location ∈ AGENTS→LOCATIONS

Listing 2. Location/agents typical invariants

We define a set AGENTS that refer to all possible agents that may exist in the sys-
tem currently, in the past or even in the future; therefore, the AGENTS set can be
modelled as carried set and can be seen as a type of variables.

The location of an agent can affect many aspects of how it operates which makes
formalizing it extremely important (Roundy et al. 2018). We introduce a constant
LOCATIONS denoting the natural coordinate space ℕ3 which formalize altitude, lon-
gitude and latitude. Then, we “link” agents with their locations by means of a total
function from the set of AGENTS to the set of LOCATIONS.

When one or more agents share the same characteristics, it is possible to associ-
ate to these agents a type (Abar et al. 2017). Groups of agents of the same type are
defined as subsets of the AGENTS set. For instance, to define 3 types of agents we use
the following formalism in Listing 3:

CONTEXT

SETS

AGENTS

Type1

Type2

Type3

CONSTANTS

LOCATIONS

AXIOMS

axm : LOCATIONS = ℕ×ℕ×ℕ

axm : partition(AGENTS, Type1, Type2, Type3)

END

Listing 3. Types of agents

The partition predicate is an easy way to enumerate sets. Mathematically, the parti-
tion predicate is defined in (2):

where x and y are two subsets of a set S.

(2)partition
(

S, x, y
)

⇔ x ∪ y = S ∧ x ∩ y = ∅

Page 10 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Each agent has a number of properties that describe it such as colour, speed, size,
etc. These properties may change during the system lifetime in order to adapt, react or
evolve (Mittal and Risco-Martín 2017). Therefore, we propose a modelization of these
properties in term of a total function from the set of agents to the set that includes all the
possible values of a certain property. This function can be denoted AgentPropertyi (this
notation is necessary when the type of property values is not primitive). For instance, in
order to describe the colour of an agent, we propose a function named “AgentColour”
defined from the set AGENTS to the set COLOURS that include all possible colours that
an agent may have. This method simplifies the modification of the colour of an agent by
only modifying the value of AgentColour (agent) (Burns et al. 2017). In general, for a
certain property i we define the set of all its possible values in the context as a carrier set
denoted PROPERTYi as shown in Listing 4. Then, we define the total function in Listing
5 below:

CONTEXT
SETS

PROPERTYi
CONSTANTS

Value1
Value2
Value3
…

AXIOMS
…
axm : PROPERTYi={Value1, Value2, Value3, …}

END

Listing 4. Definition of properties set

MACHINE
…

INVARIANTS
...

Inv : AgentPropertyi ∈ AGENTS→PROPERTYi

Listing 5. Agent properties total function

Reaction

Due to the unpredictable change of environment, each agent should have a strategy in
term of stimulus/response that indicates what to do in which circumstances (Mathe-
son and Thompson-Schill 2019). A stimulus occurs by changing a certain factor (the

Page 11 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

effect of the environment) that affect agent behaviour such as temperature, wind
speed, light, etc. Sometimes, the agent should be able to react to a certain stimulus
in order to remain functioning correctly (surviving) (Durniak et al. 2017). Therefore,
for some stimulus, we should assign a response to guarantee the appropriate reaction.
The appropriate response for a certain stimulus is up to the engineer to determine,
while this is a typical problem—each problem has its own stimulus/response logic.
The following state diagram in Fig. 4 describes the reaction process:

We propose in this paper an abstract formalization of this stimulus/response com-
bination according to the following Definition 2:

Definition 2  The reaction is adopting an appropriate response for an external stimulus.

The approach proposed in this paper to formalize the strategy is by means of two
sets: STIMULUS and RESPONSES. Similarly to the AGENTS and PROPERTYi sets,
STIMULUS and RESPONSES refer to all the possible stimulus and responses; hence
there formalization in B language is similar to the previous ones.

To formalize the association between each stimulus of an agent with an appropriate
response, we present the following total function in Listing 6:

MACHINE
…
INVARIANTS

...

Inv : AppropriateResponse ∈ AGENTS×STIMULUS→RESPONSES

Listing 6. Formalization of Stimulus/response associations.

In order to formalize the fact that agents in a CAS are able to react, we use an event
that occurs each time a stimulus appears. In this event and for a certain agent that
was affected by a certain stimulus, an appropriate response should take place and
reconfigure the agent properties. This is in other words: reacting to stimulus.

The reaction event can be presented as follows in Listing 7:

Fig. 4  Reaction process

Page 12 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Agent_reacting
ANY

agent
s

WHERE
grd1 : agent ∈ AGENTS

grd2 : s ∈ STIMULUS
THEN

act1 : AgentProperty1(agent) ≔ Property1Response(agent ↦
AppropriateResponse(agent ↦ s))

act2 : AgentProperty2(agent) ≔ Property2Response(agent ↦
AppropriateResponse(agent ↦ s))

…
END

Listing 7. Agents reaction event

PropertyiResponse is a function that determines for a certain agent the appropriate
new value of the property i based on a specific response. The definition of this func-
tion is as follows in Listing 8:

Inv : PropertyiResponse ∈ AGENTS×RESPONSES→PROPERTIESi

Listing 8. Appropriate properties values determination function.

Interaction

In order to develop the responses to stimuli, agents should enrich consistently their
knowledge base. The most efficient way to build their knowledge base is by interaction/
communication and sharing experiences (Conklin et al. 2019; Sadri et al. 2019). The
interaction between two agents can be described as illustrated in the following Fig. 5:

The interaction in a complex adaptive system is constrained by either the physical
location or logical localization. Therefore, the interaction of agents can be defined as
follows:

Definition 3  Interaction is the exchange of information between agents in a complex
adaptive system.

An agent can primarily interact in a direct way with the agents surrounding it (its
neighbors). Hence, we should associate to each agent a number of neighbors which
will at the same time define the structure of the whole system (notice that in some
cases, other properties may be added such as the distance between two agents). This
can be formalized by means of the following function in Listing 9:

Inv : Neighbors ∈ AGENTS→ ℙ(AGENTS)

Listing 9. Neighbors function

Page 13 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

ℙ is the power set function which refers to the set of all subsets of AGENTS.
The interaction of agents implies that each agent has a set of data called agent

knowledge (Grillitsch et al. 2019). This knowledge helps the agents to make decisions,
share knowledge, adapt and evolve. Such a concept is very typical hence we will pre-
sent an abstract formalization of this concept in term of a set of data associated with
each agent. Listing 10 below presents the knowledge function as a total function from
the set agents to the power set of data.

Inv : Knowledge ∈ AGENTS→ ℙ (DATA)

Listing 10. Knowledge function

where DATA is a carried set of data.
While we had presented the basic elements of interaction (neighbors and knowl-

edge), we can formalize the interaction between neighbors agents in term of an
event that occur each time two agents interact or exchange data in order to learn
(notice that the interaction as an agent affecting physically its neighbor is seen in our
approach as a stimulus that was treated in the previous section). The agent interac-
tion event is formalized in Listing 11 as follows:

Agent_interacting
ANY

agent
neighbor
data

WHERE
grd1 : agent ∈ AGENTS

grd2 : neighbor ∈ Neighbors(agent)
grd3 : data ∈ Knowledge(neighbor)

THEN
act1 : Knowledge(agent) ≔ Knowledge(agent) ⋃ {data}

END

Listing 11. Interaction event

Fig. 5  Interaction process

Page 14 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Adaptation

This concept was inspired from the biological adaptation which is defined as the pro-
cess of adapting to a certain environment to survive. In the same way, the adaptation of
an agent in complex adaptive systems is the change of strategy in order to survive and
guarantee the correct performance of its tasks (Aldrich et al. 2019). The following state
diagram in Fig. 6 illustrates the adaptation process in a complex adaptive system:

We can define adaptation as follows in Definition 4:

Definition 4  Adaptation of an agent is changing its strategy to conform a change of
environment.

The adaptation is necessary when the state of an agent is deteriorated because of the
environment change; this means that a number of specific stimuli can be observed indi-
cating this change of environment. Therefore, a new strategy should be adopted to adapt
to the new environment which can be formalized as the total function in Listing 12 that

determine for each environment (set of stimuli) the strategy that should be adopted:

Inv : AdaptedStrategy ∈ P(STIMULUS)→(AGENTS×STIMULUS→RESPONSES)

Listing 12. Adapted strategy function

In order to formalize the adaptation of an agent, we present the following event that
triggers for a certain agent when some stimuli are observed (Rozantsev et al. 2019). To
make the event more accurate, we add two guards: the first ensure that the current strat-
egy is not the adapted one (grd3); while the second ensures the deterioration of the agent
state (grd4). When all the guards are verified, the current strategy is changed by chang-
ing the AppropriateResponse. This is formalized as shown in Listing 13 below:

Fig. 6  Interaction process

Page 15 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Agent_Adapting

ANY

Agent

Stimuli

WHERE

grd1 : agent ∈ AGENTS

grd2 : Stimuli ∈ P(STIMULUS)

grd4 : AppropriateResponse≠ AdaptedStrategy(Stimuli)

grd3 : state(Neighbors(agent) ⋃ {agent}) < Previous_state(agent)

THEN

act1 : AppropriateResponse ≔ AdaptedStrategy(Neighbors(agent) ⋃
{agent})

END

Listing 13. Adaptation event

Evolving

The evolution concept as illustrated in definition 5 was also inspired from the evolution
theory in biology that can be defined as an improvement in the heritable biological char-
acteristics of a population over a long period of time in successive generations (Hall and
Strickberger 2008).

Definition 5  Evolution in a complex adaptive system is developing gradually by
improving agents strategies.

This evolution can be measured by the improvement of the whole system state.
However, it is claimed in the complex adaptive system literature that no agent can
visualize the state of the whole system; still, each agent can see its neighbors. Thus,
we assume that agents are able to measure the state of the subsystem of their neigh-
bors (the agent itself included). This ability will help the agent to observe the effect of
a change in its strategy on the subsystem and decide either it will help the system to
improve or deteriorate. In addition to the ability to measure the neighbors’ subsys-
tem state, an agent should be able to memorize the before-change state to compare it
with the after-change state; and memorize also the old strategy in order to reuse it if
needed (the case of deterioration).

Figure 7 summarizes the proposed evolving approach:
The proposed evolution process is based on 3 phases:

•	 Evolution attempt starting: in this phase, the agent proposes a random new strategy
by changing at least one stimulus/response combination and memorizes the previ-
ous strategy alongside the neighbors’ subsystem state.

•	 Deciding phase: during this phase, the agent measures the current state of the neigh-
bours’ subsystem and then compares it with the previous state in order to decide if
the change is improving or deteriorating the system. This phase should occur after

Page 16 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

a certain time from the first one to give the agent time to observe the after-change
state of the subsystem.

•	 Approving/disapproving phase: lastly, the agent may approve the change of strategy
and evolve or disapprove changes and readopt the old strategy. If the evolution is
approved then the agent will share this experience with others so that they may try
the same thing. Otherwise, the agent readopts the old strategy that was previously
memorized during the evolution attempt starting phase.

Notice that this process is based on the generation of random strategies; thus,
the system should start with a predefined acceptable strategy. Formally, this can be
defined in the initialization event (the first event that triggers at the beginning of the
system lifetime).

To translate our proposed process of evolution into Event-B, we need to start with
the basic elements and abilities that an agent needs to be able to evolve. Firstly, we
introduce the total function Previous_strategy defined from the AGENTS set to
(AGENTS × STIMULUS → RESPONSES) that allows the agent to memorize the pre-
vious strategy. Secondly, the total function Previous_state defined from AGENTS
to natural numbers that represent the before-change neighbours’ subsystem state in
term of a natural number; this number increases if the system improves and decreases
if it deteriorates. Finally, we present the State function that formalizes the assumption
that an agent is able to measure the state of a subsystem. This state function is defined
from the power set of AGENTS to a certain natural number. The formalization of the
functions used during evolution is presented in Listing 14 below:

Fig. 7  Evolution process

Page 17 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Inv : Previous_strategy ∈ AGENTS→(AGENTS×STIMULUS→RESPONSES)

Inv : Previous_state ∈ AGENTS→ ℕ

Inv : State ∈ P(AGENTS)→ ℕ

Listing 14. Evolution functions

The first event that triggers during evolution attempt starting phase is the memo-
rization event that forms a sort of backup data before starting the evolution attempt.
The second event in this phase allows the agent to change its strategy. However, dur-
ing modelling, we figure out that if two neighbours are attempting to evolve the pro-
cess may fail because in this case the after-change state that an agent will observe
does not reflect exactly the effect of the change in its strategy; rather than that, it
reflects the effect of the change of both strategies. To avoid this problem, we add a
new function that its value is equal to 1 if an agent is currently in the process of evo-
lution and 0 if not. This function can be formalized as shown in Listing 15 below:

Inv : Evolving_state ∈ AGENTS→ {0,1}

Listing 15. State of evolution function

This function will help us to ensure before starting the evolution attempt that all the
neighbours of the agent are not currently attempting to evolve.

Additionally, the process of evolution is related to the concept of time. The formali-
zation of this concept proposed in this approach is inspired by the time pattern pro-
posed by Dominique Cansell et al. (2007). This formalization is based on formalizing
the time as a natural number that increases over time. The value of this variable will
represent the time when the last time the memorization event trigger which is the
evolution attempt starting moment. Thus, the memorization and changing strategy
events can be formalized as shown in the following Listing 16 and 17:

Memorization

ANY

Agent

Current_time

WHERE

grd1 : agent ∈ AGENTS

THEN

act1 : Previous_state(agent) ≔ state(Neighbors(agent) ⋃ {agent})

act2 : Previous_strategy(agent) ≔ AppropriateResponse

act3 : time ≔ current_time

END

Listing 16. Memorization event

Page 18 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Change_strategy

ANY

Agent

strategy

WHERE

grd1 : agent ∈ AGENTS

grd2 : strategy ∈ AGENTS×STIMULUS→RESPONSES

grd3 : ∀a· a∈ Neighbors(agent) ⇒ Evolving_state(a)=0

grd4 : Evolving_state(agent) = 0

THEN

act1 : AppropriateResponse ≔ strategy

act2 : Evolving_state(agent) ≔ 1

END

Listing 17. Strategy change event

One last thing should be mentioned in this first phase, since the strategy function
is taking the agent as a parameter then it can access to all its properties and most
importantly its knowledge. This allows the agent to evolve considering its previous
experience and without repeating the same attempt several times.

The decision of either the new strategy is helping the system to evolve or deteriorate
is done after a certain time (denoted separation_time) to allow the agent to observe
the effect of the new strategy (Son et al. 2019). After that, the agent measures the
state of the neighbours’ subsystem and compares it with the previous state and then
decides either the new strategy should be approved or disapproved. For this purpose,
we present the following two events in Listing 18 and 19:

Approving_change

ANY

Agent

Current_time

WHERE

grd1 : agent ∈ AGENTS

grd2 : Evolving_state(agent) = 1

grd3 : current_time > time + separation_time

grd4 : state(Neighbors(agent) ⋃ {agent}) > Previous_state(agent)

THEN

act1 : Knowledge ≔ (λa·a∈Neighbors(agent) ∣ Knowledge(agent) ⋃
StrategyToKnowledge(AppropriateResponse ↦ Approved)) ⋃
(λa·a∉Neighbors(agent) ∣ Knowledge(agent))

act2 : Evolving_state(agent) ≔ 0

END

Listing 18. Approving change event

Page 19 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Disapproving_change

ANY

Agent

Current_time

WHERE

grd1 : agent ∈ AGENTS

grd2 : Evolving_state(agent) = 1

grd3 : current_time > time + separation_time

grd4 : state(Neighbors(agent) ⋃ {agent}) ≤ Previous_state(agent)

THEN

act1 : AppropriateResponse ≔ Previous_strategy(agent)

act2 : Knowledge ≔ (λa·a∈Neighbors(agent) ∣ Knowledge(agent) ⋃
StrategyToKnowledge(AppropriateResponse ↦ Disapproved)) ⋃
(λa·a∉Neighbors(agent) ∣ Knowledge(agent))

act3 : Evolving_state(agent) ≔ 0

END

Listing 19. Disapproving change event

In both events, the second guard helps to ensure that the agent is in the evolution
process; at the same time, the third guard guarantees the minimum separation time.
The decision about the strategy is done by means of the fourth guard which compare
the current and previous state of the subsystem. If the subsystem is evolving then
the approving event triggers which share this experience –the new strategy helps the
agent to evolve- and terminate the evolution process. As you may notice, the agent
should be able to translate the experience into data that can be added to the cur-
rent knowledge of neighbours. Therefore, we introduce in Listing 20 the StrategyTo-
Knowledge function that translates a strategy and decision into data:

Inv : StrategyToKnowledge ∈ (AGENTS×STIMULUS→RESPONSES)
×{Approved,Disapproved} → P(DATA)

Listing 20. Converting strategy to knowledge function

In the approving event, the StrategyToKnowledge function takes Approved as the
second parameter while in the disapproving event it takes Disapproved. Sharing the
experience of evolution or deteriorating will give a high priority of trying the new
strategy in future evolution attempts of neighbours in the evolution case, and ensure
high avoidance possibility of the strategy in the case of deteriorating.

Case study
This section presents a case study to extrapolate results of our contributions and
provide a means for understanding our formal approach with greater clarity.

Page 20 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Air traffic control in an airport vicinity

Air traffic control (ATC) is a service provided currently by controllers located in the
control tower. The main responsibility of the controllers is organizing and expedit-
ing the air traffic flow while preventing collisions and minimizing delays (Fact Sheet
2010). This service is performed due to the structure of the communication network
between the aircrafts and the control tower. Figure 8 below illustrates this structure:

Therefore, if the control tower has a technical issue or natural disaster, the aircrafts will
not be able to react autonomously. For this reason, we propose a complex adaptive sys-
tem structure for ATC system making aircraft able to react to the different kind of exter-
nal stimuli such as Headwind, Crosswinds and Tailwinds. Aircrafts should also be able
to interact and exchange data over a network in order to provide a more general vision
about the surrounding environment. Based on this vision, the aircrafts may need to adapt
by changing its way of flying and reacting (it strategy) which highly improve their perfor-
mance to carry out their tasks. This interaction and adaptation will allow the aircrafts to
build a rich knowledge base that permits them to perform attempts to evolve. However,
automated evolution is never guaranteed which raises the risk of deterioration; therefore,
aircrafts should be able to observe the result of their attempts to prevent this risk.

The purpose of this case study is presenting a brief example of how to apply the pro-
posed approach in the air traffic control system. This work is based on our previous
work in this domain (Blok et al. 2018; Jarrar and Balouki 2018a, b; Jarrar et al. 2017).

Requirement document

Since the main purpose of this work is guiding and building the first step of model-
ling correctly complex adaptive systems, we need to reorganize and reformulate the
requirement document in a more formal way. JR Abrial proposes in Abrial (2010) an
approach of presenting the requirement document in a more suitable form based on
presenting it along two axes: Fun that refers to the functional requirements of the sys-
tem; and Env that refer to environment assumptions and non-functional requirements.

The requirement document presented here focus on the future vision of the most
popular organizations in the domain of airspace systems: International Civil Aviation

Fig. 8  Air traffic control structure

Page 21 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Organization ICAO, Federal Aviation Administration FAA, and National Aeronaut-
ics and Space Administration (NASA) (In Focus 2018; Fact Sheet 2010; Department
of Transportation Federal Aviation Administration 2017; National Aeronautics and
Space Administration NASA 2009). Their vision focuses on making the aircrafts
smart and minimizes as much as possible the participation of human beings to avoid
errors. The proposed requirements document is as follows:

The aircrafts of the system are intelligent and able to react independently Fun 1

Aircrafts are either fixed wings or rotorcrafts Fun 2

Each aircraft has a manufacturer Fun 3

Aircrafts always have vertical and direction angle as well as linear speed Fun 4

Figure 9 illustrates the vertical and direction angle of an aircraft:

Different types of winds may be faced during flights: Headwind, Crosswinds and Tailwinds Env 1

Aircrafts are able to react in the case of Headwind, Crosswinds and Tailwinds Fun 5

Aircrafts are able to interact and exchange data over a network Fun 6

Aircrafts should keep a minimum separation distance to prevent collisions Fun 7

Each aircraft has its own knowledge base Fun 8

The environment of the system is unpredictably and frequently changeable Env 2

Aircraft are able to adapt in case of environment changes Fun 9

Aircrafts are supported with a strategy that allows it to only evolve and prevented it from deterioration Fun 10

Formalization of air traffic control

Formalizing agents

In the air traffic control system, the agents can be considered as the aircrafts and they
have different properties. In this case study, we propose the following properties: type,
manufacturer, speed, vertical angle, directional angle and location (Fun 4).

We introduce two types of aircrafts: fixed-wing and rotorcrafts (Fun 2). We also present
the following manufacturer: Airbus, Boeing, Bombardier, Cessna, and Cirrus (Fun 3).

Page 22 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

The context of the system is formalized as follows in listing 21:

CONTEXT

SETS

AIRCRAFTS

MANUFACTURER

CONSTANTS

Fixed_wings

Rotorcrafts

LOCATIONS

Airbus

Boeing

Bombardier

Cessna

Cirrus

AXIOMS

axm 1 : LOCATIONS = ℕ×ℕ×ℕ

axm 2 : Fixed_wings ∈ ℙ(AIRCRAFTS)

axm 3 : Rotorcrafts ∈ ℙ(AIRCRAFTS)

axm 4 : partition(AIRCRAFTS, Fixed_wings, Rotorcrafts)

axm 5 : partition(MANUFACTURER, {Airbus}, {Boeing}, {Bombardier} ,
{Cessna}, {Cirrus})

END

Listing 21. Aircrafts Locations/Types/Manufacturers modelisation

Fig. 9  Direction and vertical angles

Page 23 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

In the machine, we present the set of all functions that formalize the association
agent-property (Jarrar et al. 2017). This can be formalized as shown in Listing 22:

INVARIANTS

Inv 1 : aircraft ∈ AIRCRAFTS

Inv 2 : Location ∈ AIRCRAFTS→LOCATIONS

Inv 3 :AircraftManufacturer ∈ AIRCRAFTS→MANUFACTURER

Inv 4 : AircraftSpeed ∈ AIRCRAFTS→ ℕ

Inv 5 : VerticalAngle ∈ AIRCRAFTS→ 0..360

Inv 6 : DirectionalAngle ∈ AIRCRAFTS→ 0..360

Listing 22. Configuration functions

Formalizing reaction of aircrafts

In this section, we will present an example of how to model aircraft reaction in case of
strong wind. The wind is one of the main elements that affect an aircraft’s flight; there-
fore it is one of the most important stimuli that should be considered when modelling
aircraft reaction. The headwind is preferred by pilots for landing and taking off due to its
benefits of using less runway and low ground speed at touchdown. On the other hand,
Crosswinds and tailwinds are more difficult to deal with (Env 1), and aircrafts should
adapt to the situation either by changing speed, angles or even location (Fun 5). To sum-
marise, the wind may affect three properties: speed, vertical angle, and directional angle
(iFACTS 2018).

To formalize the aircrafts reaction, the first elements that should be defined are STIM-
ULUS and RESPONSES. All possible stimuli and responses should be formalized as
shown in Listing 23 below:

Page 24 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

CONTEXT

SETS

…

STIMULUS

RESPONSES

CONSTANTS

…

Headwind
Crosswinds
Tailwinds
R_Headwind
R_Crosswinds
R_Tailwinds

AXIOMS

...

axm 4 : partition(STIMULUS, {Headwind}, {Crosswinds},{Tailwinds})

axm 5 : partition(RESPONSE, {R_Headwind}, {R_Crosswinds},
{R_Tailwinds})

END

Listing 23. Context including Stimulus and responses

In the machine, the AppropriateResponse function should be added beside the differ-
ent function that allows adaptation of angular and location properties; these are Loca-
tionResponse, VerticalAngleResponse, and DirectionalAngleResponse. These functions
are presented as invariants in Listing 24:

Inv 7 : AppropriateResponse ∈ AIRCRAFTS×STIMULUS→RESPONSES

Inv 8 : LocationResponse ∈ AIRCRAFTS×RESPONSES→LOCATIONS

Inv 9 : VerticalAngleResponse ∈ AIRCRAFTS×RESPONSES→0..360

Inv 10 : DirectionalAngleResponse ∈ AIRCRAFTS×RESPONSES→ 0..360

Listing 24. Reaction functions

Finally, the reacting event can be formalized as shown in Listing 25:

Page 25 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Aircrafts_reacting
ANY

a
s

WHERE
grd1 : a ∈ AIRCRAFTS

grd2 : s ∈ STIMULUS
THEN
act1 : Location (a) ≔ LocationResponse(a ↦ AppropriateResponse(a ↦ s))

act2 : VerticalAngle (a) ≔ VerticalAngleResponse(a ↦ AppropriateResponse(a
↦ s))

act3 : DirectionalAngle (a) ≔ DirectionalAngleResponse(a
↦AppropriateResponse(a ↦ s))

END

Listing 25. The reaction of aircrafts event

Formalizing interaction between aircrafts

The first thing that should be presented to guarantee the interaction between aircraft is
modelling the structure of aircrafts network (Fun 6); this can be formalized by means of
the neighbors function. Besides, we introduce the knowledge function that formalizes
the knowledge base of each aircraft (Fun 8). For air traffic management systems, aircrafts
should always maintain a minimum distance between them which makes the distance
between aircrafts also an important factor in the system (In Focus 2018). Therefore, we
present an additional function formalizing the distance between two aircrafts. This can
be formalized in Listing 26 as follows:

Inv 11 : Neighbors ∈ AIRCRAFTS→P(AIRCRAFTS)

Inv 12 : Knowledge ∈ AIRCRAFTS→P(DATA)

Inv 13 : Distance ∈ LOCATIONS×LOCATIONS → ℕ

Listing 26. Interaction of aircrafts functions

The knowledge of aircraft is building by exchanging data over the network with
neighbors. This can be formalized as shown in the Listing 27 below:

Page 26 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Aircraft_interacting
ANY

a
neighbor
data

WHERE
grd1 : a ∈ AIRCRAFTS

grd2 : neighbor ∈ Neighbors(a)

grd3 : data ∈ Knowledge(neighbor)

THEN
act1 : Knowledge(a) ≔ Knowledge(a) ⋃ {data}

END

Listing 27. Interaction of aircrafts event

Finally, the distance and location functions can be used to guarantee a minimum
separation distance between aircraft during flying in the airport airspace (Fun 7). If
two aircrafts are keeping this distance, collision will be strongly avoided as well as
wake turbulence. The minimum distance is fixed and we denoted it Min_distance
constant. To ensure that the minimum distance will be kept the following invariant
presented in Listing 28 must be preserved:

Inv14 : ∀a,b· a∈AIRCRAFTS ∧ b∈AIRCRAFTS ⇒

distance(location(a)↦location(b))≥Min_distance

Listing 28. Separation distance invariant.

Formalizing Adaptation of aircrafts

In order for an aircraft to adapt (Fun 9), it is necessary to define for each change
of environment (P(STIMULUS)) a certain strategy (AIRCRAFTS × STIMU-
LUS → RESPONSES) that is more suitable to the new environment. This is illumi-
nated in Listing 29 below:

Inv 15 : AdaptedStrategy ∈ P(STIMULUS)→(AIRCRAFTS ×STIMULUS
→RESPONSES)

Listing 29. Adapted strategy for aircrafts

The event responsible for adapting aircrafts is denoted Aircraft_Adapting. This
event is constrained by the condition that the current state is worse than the previous
one, and the condition that the current strategy is not the adapted one. In this case,

Page 27 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

the Aircraft_Adapting event presented in Listing 30 will switch the current strategy to
the adapted one defined by the AdaptedStrategy function.

Aircraft_Adapting

ANY

a

Stimuli

WHERE

grd1 : a ∈ AIRCRAFTS

grd2 : Stimuli ∈ P(STIMULUS)

grd3 : AppropriateResponse≠ AdaptedStrategy(Stimuli)

grd4 : state(Neighbors(a) ⋃ {a}) < Previous_state(a)

THEN

act1 : AppropriateResponse ≔ AdaptedStrategy(Stimuli)

END

Listing 30. Aircrafts adaptation event

Formalizing the evolution process

Before starting the formalization of the evolution process (Fun 10), we present the Previ-
ous_strategy and Previous_state in order to make a backup of the aircraft state while we
cannot ensure if the evolution will succeed or not. Besides, we introduce the state func-
tion that formalized a feature that an aircraft may have easily; this feature is the collec-
tion of information of its surrounding aircrafts and evaluates the state of the neighbours’
subsystem state. Also, a total function will be needed to recognize either an aircraft is
in the process of evolution attempt or not; this is necessary to avoid multiple evolution
attempts of the same aircraft at the same time. The functions need for aircrafts evolution
as presented in Listing 31 below:

Inv16:Previous_strategy∈AIRCRAFTS→(AIRCRAFTS×STIMULUS→RESPONSES)

Inv 17 : Previous_state ∈ AIRCRAFTS→ ℕ

Inv 18 : State ∈ P(AIRCRAFTS)→ ℕ

Inv 19 : Evolving_state ∈ AIRCRAFTS→ {0,1}

Listing 31. Aircrafts evolution functions

The first event that triggers in the process of evolution is the Memorization event pre-
sented in Listing 32. This event allows the backup of before-change state and strategy as
well as the time when the process started.

Page 28 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Memorization

ANY

a

Current_time

WHERE

grd1 : a ∈ AIRCRAFTS

grd2 : Current_time ∈ ℕ

THEN

act1 : Previous_state(a) ≔ state(Neighbors(a) ⋃ {a})

act2 : Previous_strategy(a) ≔ AppropriateResponse

act3 : time ≔ current_time

END

Listing 32. Aircrafts memorization event

The next event is called Change_strategy; this event changes the strategy of a certain
aircraft that has no neighbor in the process of evolution as shown in Listing 33. How-
ever, if two neighbors are changing their strategies at the same time, the effect of these
strategies will not be clear while these two neighbors will share some neighbors that will
be affected by both strategies changes. Therefore, we allow the change of strategy for
only aircrafts that do not have any neighbor in the process of evolution.

Change_strategy

ANY

a

strategy

WHERE

grd1 : a ∈ AIRCRAFTS

grd2 : strategy ∈ AIRCRAFTS×STIMULUS→RESPONSES

grd3 : ∀x· x∈ Neighbors(a) ⇒ Evolving_state(x)=0

grd4 : Evolving_state(a) = 0

THEN

act1 : AppropriateResponse ≔ strategy

act2 : Evolving_state(a) ≔ 1

END

Listing 33. Changing aircraft strategy event

After a certain time denoted separation_time, the aircraft may decide if the change
should be approved or not based on the before and after-change states. If the before
change state is better than the after change state then the Approving_change event will
trigger, otherwise, the one who will trigger is the Disapproving_change event. When the
Approving_change trigger, it enriches the knowledge of the evolving aircraft and this
knowledge will be shared with its neighbors by means of interaction; and then it ter-
minates the process of evolution by associating to the evolving state the value zero as

Page 29 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

shown in Listing 34 (Department of Transportation Federal Aviation Administration
2017). In the same way, if disapproving_change trigger then the previous strategy backed
up during the memorization event will be readopted; this is shown in Listing 35. Also,
the knowledge of the aircraft will be enriched to avoid trying the same strategy over and
over. These two events can be formalized as belows:

Approving_change

ANY

a

Current_time

WHERE

grd1 : a ∈ AIRCRAFTS

grd2 : Current_time ∈ ℕ

grd3 : Evolving_state(a) = 1

grd4 : current_time > time + separation_time

grd5 : state(Neighbors(a) ⋃ {a}) > Previous_state(a)

THEN

act1 : Knowledge ≔ (λx·x∈Neighbors(a) ∣ Knowledge(a) ⋃
StrategyToKnowledge(AppropriateResponse ↦Approved)) ⋃
(λx·x∉Neighbors(agent) ∣ Knowledge(a))

act2 : Evolving_state(agent) ≔ 0

END

Listing 34. Approving evolution of aircraft event

Disapproving_change

ANY

a

Current_time

WHERE

grd1 : a∈ AIRCRAFTS

grd2 : Current_time ∈ ℕ

grd3 : Evolving_state(a) = 1

grd4 : current_time > time + separation_time

grd5 : state(Neighbors(a) ⋃ {a}) ≤ Previous_state(a)

THEN

act1 : AppropriateResponse ≔ Previous_strategy(a)

act2 : Knowledge ≔ (λx·x∈Neighbors(a) ∣ Knowledge(a) ⋃
StrategyToKnowledge(AppropriateResponse ↦Disapproved)) ⋃
(λx·x∉Neighbors(a) ∣ Knowledge(a))

act3 : Evolving_state(a) ≔ 0

END

Listing 35. Disapproving evolution of aircraft event

Page 30 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

Before starting the proof verification, one last event should be added. This event is
called the INITIALISATION event; it is an event without guards that what happen at the
beginning. In general, this event initializes all the variables in the proposed model. The
Listing 36 below presents the initialization of all the variables:

INITIALISATION

BEGIN

act1 : aircraft :∈ AIRCRAFTS

act2 : location :∈ AIRCRAFTS→LOCATIONS

act3 : AircraftManufacturer :∈ AIRCRAFTS→MANUFACTURER

act4 : AircraftSpeed :∈ AIRCRAFTS→ ℕ

act5 : verticalAngle :∈ AIRCRAFTS→ 0 360

act6 : DirectionalAngle :∈ AIRCRAFTS→ 0 360

act7 : AppropriateResponse :∈ AIRCRAFTS×STIMULUS→RESPONSES

act8 : LocationResponse :∈ AIRCRAFTS×RESPONSES→LOCATIONS

act9 : VerticalAngleResponse :∈ AIRCRAFTS×RESPONSES→0 360

act10 : DirectionalAngleResponse :∈ AIRCRAFTS×RESPONSES→ 0 360

act11 : Neighbors :∈ AIRCRAFTS→ℙ(AIRCRAFTS)

act12 : Knowledge :∈ AIRCRAFTS→ℙ(DATA)

act13 : Distance :∈ LOCATIONS×LOCATIONS → {Min_distance}

act14 : AdaptedStrategy :∈ ℙ(STIMULUS)→(AIRCRAFTS×STIMULUS
→RESPONSES)

act15 : Previous_strategy:∈AIRCRAFTS→(AIRCRAFTS × STIMULUS
→RESPONSES)

act16 : Previous_state :∈ AIRCRAFTS→ ℕ

act17 : State :∈ ℙ(AIRCRAFTS)→ ℕ

act18 : Evolving_state :∈ AIRCRAFTS→ {0,1}

act19 : time≔0

act20 : Separation_time :∈ ℕ

act21 : StrategyToKnowledge :∈ (AIRCRAFTS×STIMULUS→RESPONSES) ×
{Approved,Disapproved} → ℙ(DATA)

END

Listing 36. INITIALIZATION Event

Verification and validation
In this section, we are interested in experiments to validate our work. To do this, we
used a verification using proof obligations and verification using ProB animator.

Page 31 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Verification using proof obligations

In order to guarantee the correctness of the proposed model in the case study, we use
the Rodin platform to perform proof obligations. Table 1 presented below illuminate sta-
tistics about the established proofs:

This table is generated automatically by Rodin and presents the number of proofs gen-
erated including manual (6) and automatic (109) proofs. Most of these proofs are Invari-
ants preservation verifications which guarantee that all the invariants are maintained
verified during the system lifetime. Therefore, the construction of a system based on the
proposed model will generate a correct by construction system.

Verification using ProB animator

The validation of invariants preservation guarantees that all the before and after event
states verify always all the invariants, which is a very critical validation requirement.
Still, this validation is not enough to ensure the correctness; however, in some cases,
we may arrive at a state where not guard is verified. In these cases, all events will be
prevented from triggering since their guards are not verified. This is why another type of
validation is needed which is the Deadlock Freedom.

In order to guarantee the deadlock freedom, two methods are provided: Invariant
preservation of one additional invariant, and model checking through animation (Bozga
et al. 2019). The first method is based on adding an invariant that include the disjunction
of all the model events guards. This method guarantees the deadlock-freedom through
ensuring that at least one of the guards is verified no matter what is the state of the sys-
tem. Listing 37 illustrates the invariant of deadlock freedom:

Inv14 : (∃a,s· a ∈ AIRCRAFTS ∧ s ∈ STIMULUS) ∨

(∃a, neighbour, data· a ∈ AIRCRAFTS ∧ neighbor ∈ Neighbors(a) ∧ data ∈
Knowledge(neighbor) ∨

(∃a,stimuli· a ∈ AIRCRAFTS stimuli ∈ ℙ(STIMULUS) ∧ AppropriateResponse
≠ AdaptedStrategy(stimuli) ∧ State(Neighbors(a) ∪ {a}) < Previous_state(a))
∨

(∃a, Current_time· a ∈ AIRCRAFTS ∧ Current_time ∈ ℕ) ∨

(∃a, strategy· a ∈ AIRCRAFTS ∧ strategy ∈
AIRCRAFTS×STIMULUS→RESPONSES ∧ ∀x· x∈ Neighbors(a) ⇒
Evolving_state(x)=0 ∧ Evolving_state(a) = 0) ∨

(∃a, Current_time· a ∈ AIRCRAFTS ∧ Current_time ∈ ℕ ∧ Evolving_state(a) =
1 ∧ Current_time > time + Separation_time ∧ State(Neighbors(a) ∪ {a}) >
Previous_state(a)) ∨

(∃a, Current_time· a∈ AIRCRAFTS ∧ Current_time ∈ ℕ ∧ Evolving_state(a) =
1 ∧ Current_time > time + Separation_time ∧ State(Neighbors(a) ∪ {a}) ≤
Previous_state(a))

Listing 37. Deadlock-freedom verification invariant

As you may notice, the invariant is overcharged and contain a significant number of
predicate which complicates the establishment of the invariant preservation proof.
Therefore, the second method based on model checking through animation is more

Page 32 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

suitable for this kind of verification. In almost all cases, if there are deadlocks in the
model they will be revealed through animating the model several times with a big num-
ber of steps. For this task, we use a tool called ProB Animator. ProB is a feature of the
Rodin platform that allows the animation, constraint solving and model checking of
models written in the B-language (Körner and Bendisposto 2018). We have used this
tool to animate our model using one hundred steps and the model always was free of
deadlocks. Figure 10 illustrates the result of ProB model checking with a total of 14,568
transitions that visited 4779 nodes. During this check no deadlock or invariant violation
was detected which highly guarantees Deadlock freedom in our model. All experiments
were conducted on a 64-bit PC, Windows 7 Professional operating system, an Intel Core
i7, 2.13 GHz Processor with 4 cores and 4 GB RAM.

To conclude, our approach allows the creation of a model that is verified by proof
obligations and animation; as a result, a system constructed based on this model will
be correct by construction. Therefore, our approach provides a systematic way to build
highly verified formal models of computing complex adaptive systems using the Event-B
method.

Table 1  Rodin report

Element name Total Auto Manual

ATC system 115 109 6

Context 7 7 0

Machine 108 102 6

Fig. 10  Deadlock-freedom verification screenshot

Page 33 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Conclusion
We have introduced the steps and reasoning involved in the construction of a model of
complex adaptive systems using the Event-B formal method. The main contribution is
presenting a methodology for modelling that can be used to develop any complex adap-
tive systems. We cover the most important concepts proposed by the most well-known
works in this domain, which facilitate the development of such a complex system.
According to the requirements document, the developers of the system may add more
refinements by including their typical requirements to build a customized model suit-
able to their cases. To illustrated the proposed approach, we have presented a use case of
an air traffic control system. The requirement document of this use case was build based
on several organizations descriptions (FAA, ICAO, and NASA). After the application of
the approach, a model, that includes all these requirements in addition to complex adap-
tive systems concepts,has been produced. The validation of the model was guaranteed
by two types of verifications: proof obligations using Rodin and Deadlock freedom using
ProB. Therefore, the correctness of the generated model of the case study is guaranteed
which demonstrate the validity of the proposed approach.

Due to the huge number of concepts and characteristics of Complex Adaptive Sys-
tem, the presentation of a methodology to formalize them all in a single work is not an
easy task. Therefore, we intend, In future works, to improve the proposed approach by
considering the rest of the complex adaptive systems concepts such as populations that
refer to collections of agents or strategies, self-similarity, interaction pattern, selection of
strategies, emergence and self-organization. Moreover, the combination of this approach
with other verification methods such as model checking will highly minimize the prob-
ability of failures. Furthermore, we aim to develop a complete recommendation for other
standardizations such as QoS and RM-ODP (Jarrar et al. 2017; Jarrar and Al 2019).

Abbreviations
CAS: Complex adaptive system; ATC​: Air traffic control system; ICAO: International Civil Aviation Organization; FAA:
Federal Aviation Administration; NASA: National Aeronautics and Space Administration; QoS: Quality of service; RM-ODP:
Reference Model of Open Distributed Processing.

Acknowledgements
This research work is supported by Computing, Imaging and Modeling of Complex Systems Laboratory, Settat, Morocco.

Authors’ contributions
All authors contribute in collecting information, writing, modeling, and reviewing. All authors read and approved the
final manuscript.

Funding
The study was not funded.

Availability of data and materials
No dataset was used in this work. This work is based on international recommendations.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculty of Sciences and Technologies of Settat, Informatics Imaging and Modeling of Complex Systems Laboratory,
University Hassan First, Settat, Morocco. 2 Computer Science Department, Faculty of Sciences, Mohammed V University,
Rabat, Morocco.

Received: 23 November 2019 Accepted: 16 January 2020

Page 34 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3

References
Abar S, Theodoropoulos GK, Lemarinier P, O’Hare GM (2017) Agent based modelling and simulation tools: a review of the

state-of-art software. Comput Sci Rev 24:13–33
Abeywickrama DB, Zambonelli F (2012) Model checking goal-oriented requirements for self-adaptive systems. In: 2012

IEEE 19th international conference and workshops on engineering of computer-based systems, IEEE, New York, pp
33–42

Abrial J-R (2010) Modeling in Event-B: system and software engineering. Cambridge University Press, New York
Akram W, Niazi MA (2018) A formal specification framework for smart grid components. Complex Adapt Syst Model 6(1):5
Aldrich J, Garlan D, Kästner C, Le Goues C, Mohseni-Kabir A, Ruchkin I, Voysey I (2019) Model-based adaptation for robot-

ics software. IEEE Softw 36(2):83–90
Bartels B, Kleine M (2011) A CSP-based framework for the specification, verification, and implementation of adaptive sys-

tems. In: Proceedings of the 6th international symposium on software engineering for adaptive and self-managing
systems, ACM, New York, pp 158–167

Blok AN, Sharpanskykh A, Vert M (2018) Formal and computational modeling of anticipation mechanisms of resilience in
the complex sociotechnical air transport system. Complex Adapt Syst Model 6(1):7

Boudi Z, Ait Wakrime A, Collart-Dutilleul S, Haloua M (2019) Introducing B-sequenced petri nets as a CPN sub-class for
safe train control. In: Proceedings of the 14th international conference on evaluation of novel approaches to soft-
ware engineering, SCITEPRESS-Science and Technology Publications, LDA, pp 350–358

Bozga M, Iosif R, Sifakis J (2019) Checking deadlock-freedom of parametric component-based systems. In: International
conference on tools and algorithms for the construction and analysis of systems, Springer, Cham, pp 3–20

Burns AJ, Posey C, Courtney JF, Roberts TL, Nanayakkara P (2017) Organizational information security as a complex adap-
tive system: insights from three agent-based models. Inf Syst Front 19(3):509–524

Cansell D, Méry D, Rehm J (2007) Time constraint patterns for event B development. In: International conference of B
users. Springer, Berlin, Heidelberg, pp 140–154

Clayton T, Radcliffe N (2018) Sustainability: a systems approach. Routledge, Abingdon
Conklin SM, Davidson PL, Archambault A, Lee JY, Berg J, Zuo P, Rogan P (2019) U.S. Patent Application No. 10/270,819
Dehghanpour K, Nehrir MH, Sheppard JW, Kelly NC (2018) Agent-based modeling of retail electrical energy markets with

demand response. IEEE Trans Smart Grid 9(4):3465–3475
Department of Transportation Federal Aviation Administration (2017) Aeronautical information publication, 24th ed.

United States of America, amendment 2
Durniak T, Friedlander RR, Kraemer JR, Linton J (2017) U.S. Patent Application No. 14/752,230
Fact Sheet—FAA & NTSB’s “Most Wanted” Recommendations (2010) https​://www.faa.gov/news/fact_sheet​s/news_story​

.cfm?newsI​d=11186​. Acessed 15 Sept 2018
Giese H (2016) Formal models and analysis for self-adaptive cyber-physical systems. In international workshop on formal

aspects of component software, Springer, Cham, pp 3–9
Grillitsch M, Schubert T, Srholec M (2019) Knowledge base combinations and firm growth. Res Policy 48(1):234–247
Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, De Angelis DL (2005) Pattern-oriented modeling of agent-

based complex systems: lessons from ecology. Science 310(5750):987–991
Groff ER, Johnson SD, Thornton A (2019) State of the art in agent-based modeling of urban crime: an overview. J Quant

Criminol 35(1):155–193
Hall B, Strickberger MW (2008) Strickberger’s evolution. Jones & Bartlett Learning, Burlington
iFACTS—Air Traffic Management System (2018) https​://www.adaco​re.com/custo​mers/uks-next-gener​ation​-atc-syste​m.

Acessed 15 Sept 2018
Iglesia DGDL, Weyns D (2015) MAPE-K formal templates to rigorously design behaviors for self-adaptive systems. ACM

Trans Auton Adapt Syst 10(3):15
In Focus: ICAO’S Strategic Objectives (2018) https​://www.icao.int/Pages​/defau​lt.aspx. Acessed 15 Sept 2018
Jarrar A et al. (2017) Modeling aircraft landing scheduling in Event B. In: International conference on information technol-

ogy and communication systems. Springer, pp 127–142
Jarrar A, Al (2019) Reference model of open distributed processing basic modelling concepts in Event-B. In: Third interna-

tional conference on computing and wireless communication systems proceeding, ICCWCS 2019, EAI, http://dx.doi.
org/10.4108/eai.24-4-2019.22840​96

Jarrar A, Balouki Y (2018) Formal reasoning for air traffic control system using Event-B method. In: International confer-
ence on computational science and its applications, Springer, Cham, pp 241–252

Jarrar A, Balouki Y (2018b) Formal modeling of a complex adaptive air traffic control system. Complex Adapt Syst Model
6(1):6

Jarrar A, Balouki Y (2018) Towards sophisticated air traffic control system using formal methods. Model Simul Eng 2018
Jarrar A, Balouki Y, Gadi T (2017) Formal specification of QoS negotiation in ODP system. Int J Electr Comput Eng 7(4):2045
Kharchenko V, Kondratenko Y, Kacprzyk J (Eds.) (2017) Green IT engineering: concepts, models, complex systems archi-

tectures. Springer International Publishing, Berlin
Körner P, Bendisposto J (2018) Distributed model checking using ProB. In: NASA formal methods symposium, Springer,

Cham, pp 244–260
Matheson HE, Thompson-Schill SL (2019) Investigating grounded conceptualization: stimulus-response compatibility for

tool handles is due to spatial attention. J Exp Psychol Hum Percept Perform 45(4):441
Mittal S, Risco-Martín JL (2017) Simulation-based complex adaptive systems. In: Guide to simulation-based disciplines,

Springer, Cham, pp. 127–150
Moncada JA, Verstegen JA, Posada JA, Junginger M, Lukszo Z, Faaij A, Weijnen M (2019) Exploring the emergence of a

biojet fuel supply chain in Brazil: an agent-based modeling approach. GCB Bioenergy. 11(6):773–790
National Aeronautics and Space Administration NASA, NASA Official: Brian Dunbar. Past Projects: Intelligent Flight Control

System IFCS (2009) https​://www.nasa.gov/cente​rs/dryde​n/resea​rch/IFCS/index​.html. Acessed 15 Sept 2018
Niazi MA (2017) Towards a novel unified framework for developing formal, network and validated agent-based simula-

tion models of complex adaptive systems. arXiv preprint arXiv​:1708.02357​

https://www.faa.gov/news/fact_sheets/news_story.cfm%3fnewsId%3d11186
https://www.faa.gov/news/fact_sheets/news_story.cfm%3fnewsId%3d11186
https://www.adacore.com/customers/uks-next-generation-atc-system
https://www.icao.int/Pages/default.aspx
http://dx.doi.org/10.4108/eai.24-4-2019.2284096
http://dx.doi.org/10.4108/eai.24-4-2019.2284096
https://www.nasa.gov/centers/dryden/research/IFCS/index.html
http://arxiv.org/abs/1708.02357

Page 35 of 35Jarrar et al. Complex Adapt Syst Model (2020) 8:3 	

Niazi MA, Hussain A (2010) A novel agent-based simulation framework for sensing in complex adaptive environments.
IEEE Sens J 11(2):404–412

Rodin GXVLM (2017) Rodin. IIC-international review of intellectual property and competition law 48(5):592–598
Rouff C, Buskens R, Pullum L, Cui X, Hinchey M (2012) The AdaptiV approach to verification of adaptive systems. In: Pro-

ceedings of the fifth international c* conference on computer science and software engineering, ACM, New York,
pp 118–122

Roundy PT, Bradshaw M, Brockman BK (2018) The emergence of entrepreneurial ecosystems: a complex adaptive sys-
tems approach. J Bus Res 86:1–10

Rozantsev A, Salzmann M, Fua P (2019) Beyond sharing weights for deep domain adaptation. IEEE Trans Pattern Anal
Mach Intell 41(4):801–814

Sadraddini S, Belta C (2017) Formal methods for adaptive control of dynamical systems. In 2017 IEEE 56th annual confer-
ence on decision and control (CDC), IEEE, New York, pp 1782–1787

Sadri AM, Hasan S, Ukkusuri SV (2019) Joint inference of user community and interest patterns in social interaction
networks. Soc Netw Anal Mining 9(1):11

Siciliano B, Khatib O (2019) Humanoid robots: historical perspective, overview, and scope. Humanoid robotics: a refer-
ence, pp 3–8

Son CHC, Kim B, Seo J (2019) Evolution map based on advance invention, process, and case studies. J Int TRIZ Assoc
Matriz 1:61–73

Vistbakka I, Troubitsyna E (2018) Towards integrated modelling of dynamic access control with UML and Event-B. arXiv
preprint arXiv​:1805.05521​

Wakrime AA, Ayed RB, Collart-Dutilleul S, Ledru Y, Idani A (2018a) Formalizing railway signaling system ERTMS/ETCS using
UML/Event-B. In: International conference on model and data engineering, Springer, Cham, pp 321–330

Wakrime AA, Gibson JP, Raffy JL (2018b) Formalising the requirements of an E-voting software product line using Event-B.
In: 2018 IEEE 27th international conference on enabling technologies: infrastructure for collaborative enterprises
(WETICE), IEEE, New York, pp 78–84

Zafar NA (2016) Formal specification and analysis of take-off procedure using VDM-SL. Complex Adapt Syst Model 4(1):4
Zafar NA, Afzaal H (2017) Formal model of earthquake disaster mitigation and management system. Complex Adapt Syst

Model 5(1):10

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1805.05521

	Formal approach to model complex adaptive computing systems
	Abstract
	Introduction
	Background
	Complex adaptive systems
	Formal method: Event-B
	Related works
	Recent works about complex adaptive systems
	Formal methods for complex adaptive systems

	Proposed approach
	Summary of approach
	Formal approach to model complex adaptive computing systems using Event-B
	Agent
	Reaction
	Interaction
	Adaptation
	Evolving

	Case study
	Air traffic control in an airport vicinity
	Requirement document
	Formalization of air traffic control
	Formalizing agents
	Formalizing reaction of aircrafts
	Formalizing interaction between aircrafts
	Formalizing Adaptation of aircrafts
	Formalizing the evolution process

	Verification and validation
	Verification using proof obligations
	Verification using ProB animator

	Conclusion
	Acknowledgements
	References

