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Introduction
Developing computer systems that benefit from complex adaptive systems concepts is 
a significant and challenging task in the context of computer science engineering. The 
development of such a system will allow its elements to interact, react, adapt and even 
evolve autonomously (Kharchenko et  al. 2017). The implementation of these capabili-
ties correctly will make the dream of making computers more independent and intel-
ligent than human come true. However, the achievement of this dream is constrained by 
hardware and software limits as well as the safety requirements. For example, develop-
ing robots that can serve humans should be performed while taking into consideration 
the capability of analysing the surrounding environment and commands understand-
ing besides the safety of the served human (Siciliano and Khatib 2019). The first step to 
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implementing complex adaptive systems is modelling it correctly to deal with its com-
plexity and avoid failures. One of the most powerful design tools in computer engineer-
ing is formal methods based on theorem-proving due to their strong assurance of bugs’ 
absence.

In this paper, we present an approach to develop correctly a complex adaptive sys-
tem formal model while ensuring homogeneity and correctness. In particular, we focus 
on developing a standard model that plays the role of a starting point in the process of 
developing any complex adaptive system. This model includes the essential concepts of 
complex adaptive systems that can be enriched by adding detail depending on the typi-
cal requirements of the system.

Formal methods are techniques based on the mathematical language used for specify-
ing and verifying systems. Utilization of formal techniques can extraordinarily expand 
our comprehension of the system by uncovering inconsistencies, ambiguities, and defi-
ciency that may be harder to detect using standard methods. The formal method used 
for system-level modelling and analysis is Event-B, which is based on set theory nota-
tion. Event-B uses refinement to represent the different abstraction levels of the system 
while performing proofs to guarantee consistency of refinements. This method has been 
effectively used in different systems where no bugs were detected. For instance, the driv-
erless meteor in Paris worked correctly and no bugs were identified after the theoretical 
proofs, neither at the functional approval (Boudi et al. 2019). This achievement encour-
ages Alstom and Siemens Transportation Systems to use this method to develop future 
metros (Vistbakka and Troubitsyna 2018). In addition, several approaches have been 
proposed that use Event-B to provide a correct system (Wakrime et al. 2018a, b). There-
fore, we also used Event-B to develop the concepts presented in this paper.

In many works, researchers tried to apply formal methods to verify the correctness of 
complex systems where they applied different concepts such as the process algebra CSP 
(Bartels and Kleine 2011), SOTA (Abeywickrama and Zambonelli 2012), MAPE-K (Igle-
sia and Weyns 2015), SMARTOS (Giese 2016), and LTL (Sadraddini and Belta 2017). In 
these works, researchers proved that the application of formal methods highly improve 
the security and correctness of complex systems. Unlike all these works that presents 
ready-made formal models, the correct-by-construction approach proposed in this work 
presents a systematic way that guides engineers in using a formal method to develop 
any complex adaptive system. Furthermore, this approach uses the basics of first-order 
predicate logic and set theory which make it easy and convenient for users of different 
scientific backgrounds.

In order to illustrate the proposed approach, we present a case study of modeling an 
air traffic control system as a complex adaptive system. The presented approach is a 
generalization of the proposed one in our previous work (Jarrar and Balouki 2018). The 
previous work deals with the application of Event-B to verify and analyze an air traffic 
control system; whereas, this work present a more general approach that can be applied 
in the case of any complex adaptive system.

The rest of the paper is structured as follows. Section 2 presents the state of art, related 
works, and we give some background on formal methods and validation tools used in 
this paper. In Sect. 3, we give a summary of the proposed approach in 5 steps, after that, 
we present the main contribution in term of a methodology for modeling each concept 
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of a Complex Adaptive System: agent, reaction, interaction, evolution, and adaptation. 
In Sect. 4, we illustrate the use of our approach through a case studied of an air traffic 
control system ATC. Section 5 focuses on the validation and verification of the model 
generated in the case study to ensure the validity of our approach. Finally, we conclude 
in Sect. 6.

Background
In this section, we specify the technical terms and concepts related to the complex adap-
tive systems and formal method Event-B. In addition, we introduce the related works to 
position our contribution.

Complex adaptive systems

Nowadays, computing systems are becoming more and more complex and adaptive 
through the inspiration of concepts from the natural complex adaptive systems. Many 
concepts were inspired when observing systems such as social insect colonies, embryo 
development as well as the immune system. On the other hand, many other systems in 
nature such as the biosphere and the human brain are tried to be simulated as com-
plex adaptive systems. Furthermore, the human being, the stock exchange, the business 
world, the social group are also considered of the complex adaptive systems.

Recently, the scientific community has opted for an adaptive approach to the devel-
opment of computing systems. The integration of this approach provides a set of ben-
efits such as autonomous adaptation and evolution of the system elements called agents. 
Adaptation of an agent is based on detecting the existence of a problem occurred due 
to environmental change and then trying to adopt a suitable strategy to avoid chaos. 
Whereas evolution relies on the control of the state of the system to identify the behav-
iours of the components that allow the system to evolve and strengthen it and at the 
same time impoverishing the behaviour that negatively influences evolution. Figure  1 
bellows gives an overview of the complex adaptive system structure:

Formal method: Event‑B

To overcome the high risk of failure in complex systems, it is extremely important to 
perform preliminary modeling based on a certain theory. The main purpose of these 
theories is explaining, predicting, and understanding some characteristics of the system 
before construction. These theories are used in different field of science such as Max-
well’s equations in electrical engineering and theory of material’s strength in civil engi-
neering. In computer engineering, formal methods are less considered, therefore, there 
are engineers who do not know any theory building computing systems (Clayton and 
Radcliffe 2018). These systems often have bugs that may cost millions to fix. Hence, the 
use of formal methods is highly recommended for verifying and specifying software in 
order to highly guarantee bugs’ absence.

Event-B is a system-level modelling formal method that provides a set of features such 
as analysis and the correct-by-construct approach performed by theorem proving (Vist-
bakka and Troubitsyna 2018; Abrial 2010). Modelling in Event-B is introduced as a set 
of successive models that are made of two parts: Context (the static part) and Machine 
(the dynamic part). The context includes the definition of carried sets, constants, and 
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axioms. The machine is made up of variables that describe the state of the systems. The 
states of the systems are constrained by mathematical formulas called invariants. The 
states transitions are performed by events. The events are made up of actions that are 
the elementary operation allowing the change of variables values. The events may have 
some necessary conditions to trigger, these conditions are called guards.

Event-B supports a very practical technique of modelling, which is refinement. Refine-
ment relies on creating an abstract model including the basic elements of the system; 
after that, more details are added to build successive models that are more and more 
concrete. This technique makes modelling easier than trying to model the whole system 
at once, we focus on a limited number of requirement in each step under the condition 
of cleverly choose the refinement strategy. Figure 2 below illuminates of the process of 
this modelling process:

In order to guarantees the well-performance of this process, a set of proofs called 
proof obligations should be discharged. These proofs ensure the consistency of mod-
els and the invariant preservations as well as the non-contradiction of refinements. The 
most important proof among these is the invariant preservation which guarantees that 
all events preserve a certain invariant. More formally, let I a certain invariant, A refers to 
the set of axioms, c refers to constants, while s are the carried sets, v and v’ are respec-
tively the before and after values of variables. The invariant preservation proof is formal-
ized in (1).

Almost all proofs are discharged automatically using an eclipse based platform called 
Rodin (2017). In the case of other few ones, a set of predicates may be added to guide the 
interactive prover.

(1)A(c, s) ∧ I(v, c, s)⊢I
′(

v′, c, s
)

Fig. 1  Structure of complex adaptive systems
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Related works

Recent works about complex adaptive systems

Given the complexity that can be increased explosively of this kind of systems compared 
to the increase in the number of components, their engineering must be carried out with 
great attention to minimize the error rate and avoid the chaos that these errors may gen-
erate. The majority of these errors are caused by issues related to the design phase and 
the use of standard methods to develop such complex systems.

To overcome these problems, many works addressed methods to model and study the 
behaviour of these systems before the construction phase. The most used approach to 
model an Adaptive Complex System is that of agent-based modeling. This approach has 
been defined by Volker (Grimm et al. 2005) as a class of computer models for simulat-
ing the actions and interactions of autonomous agents (individual or collective entities 
such as organizations or groups) to evaluate their effects on the environment system as 
a whole. It combines elements of game theory, complex systems, emergence, computer 
sociology, multi-agent systems and evolutionary programming. Monte Carlo methods 
are used to introduce chance.

This method has been used in many works to simulate the behaviour of different sys-
tems such as the retail electrical energy markets with demand response (Dehghanpour 
et  al. 2018), urban crimes development (Groff et  al. 2019), and the emergence of bio-
jet fuel supply chain in Brazil (Moncada et  al. 2019). These works present a graphical 
and numerical result of a simple agent-based modelling simulation performed through 
mathematical models. However, the verification of complex behaviour is constrained by 
the performance of the machine used for simulation and still always test for finite states; 
therefore, the verification does not perfectly ensure the absence of failures.

Fig. 2  Process of modelling
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Formal methods for complex adaptive systems

The use of formal methods in the development of complex systems is highly recom-
mended due to the high assurance of bugs’ absence that they provide. However, in order 
to use them, a very clear understanding of the system behaviour is a requirement which 
makes their use in the case of Complex Adaptive Systems a difficult task. Therefore, only 
a few works attempt to use formal methods in order to model and verify complex adap-
tive system. The authors of Bartels and Kleine (2011) study the specification and verifica-
tion of adaptive systems seen as a subclass of reactive systems using the process algebra 
CSP. This allows them to use a set CSP tools for the verification such as CSP-Prover and 
ProB. They also introduce an approach for the implantation of a specified system. In 
Abeywickrama and Zambonelli (2012) DB Abeywickrama and al. present Model Check-
ing Goal-Oriented Requirements for Self-Adaptive Systems. To this end, authors show 
how to perform a goal-level model checking analysis of complex adaptive systems by 
SOTA (State of the Affairs) as a general goal-oriented modelling framework. The effec-
tiveness of their method is exposed by transforming the conceptual SOTA model into an 
operational one. On the other hand, Christopher and al give an overview in Rouff et al. 
(2012) of an approach for the verification of adaptive software systems. This approach 
is a result of the combination of different fields of science: stabilization science, high-
performance computing simulations, compositional verification and traditional verifi-
cation techniques, and operational monitors. In Iglesia and Weyns (2015), the authors 
propose a promising approach to handle designing software systems that have to deal 
with dynamic operating conditions through self-adaptive dynamic realized by a MAPE-
K (Monitor-Analyze-Plan-Execute plus Knowledge). They validate their approach using 
formal specified MAPE-K templates that encode design expertise for a family of self-
adaptive systems. Authors of Giese (2016) also present formal models and analysis for 
self-adaptive cyber-physical systems. They analyze the challenges face self-adaptive 
cyber-physical systems and outline their results through a generic approach based on 
extensions of graph transformations systems called SMARTOS. Sadraddini and Belta 
(2017) is considered as one of the latest work in this domain in which authors use for-
mal methods for adaptive control of dynamical systems. They develop a method to con-
trol discrete-time systems with initially unknown parameters from LTL (linear temporal 
logic) specifications. They also show how to compute adaptive control strategies for 
finite and infinite systems using formal methods.

Another approach has been presented by Niazi and Hussain (2010), authors proposed 
a formal agent-based simulation framework (FABS). This framework is based on formal 
specification to describe wireless sensor networks used for sensing the environment of 
complex adaptive system. The approach is applied to a boids model of self-organized 
flocking of animals monitored by a random deployment of proximity sensors. Zafar 
(2016) presented a formal specification of take-off procedure using Vienna Develop-
ment Method-Specification Language VDM-SL complex adaptive systems modeling in 
order to overcome communication failures that cause delays and collisions. The pre-
sented model is developed by a series of refinements and made up of (i) a static part 
that includes the graph-based model, aircrafts, controllers, taxiways and runways, 
whereas, (ii) the dynamic part describe the take-off algorithms. The same formal method 
along with the graph theory is used for modeling wireless sensor and actors networks 
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(WSANs) earthquake disaster mitigation and management system by Zafar et  al. in 
Zafar and Afzaal (2017). Although these approaches are formally well presented, still 
these work are ‘ad-hoc’ for specific cases of complex adaptive systems and wireless sen-
sor networks. On the other hand, our approach is a more general and can be applied in 
any case of complex adaptive system modeling and it is independent of the used technol-
ogy which extend its applicability.

Unlike all the works presented in this section that presents ready-made formal mod-
els, our approach presents a systematic standards way to guide in generating of formal 
models while guaranteeing the homogeneity of models and the use of basic mathemati-
cal concepts. For this study, we use a formal method called Event-B that present a set of 
tools that can be used for the verification of models such as proof obligations and model 
checking through animation. These tools ensure the correctness of models and thus the 
resulting implemented system is correct by construction.

Proposed approach
The purpose of this section is to present our contributions namely formal approach to 
model complex adaptive computing systems using Event-B.

Summary of approach

Our approach is as follow:

1.	 Filtering the desired concepts needed in the case study. During this stage we specify 
among the possible concepts those which interest us (reaction, interaction, adapta-
tion, and evolution).

2.	 Filtering and formalizing the related requirements from the requirement document. 
These requirements will be inserted in step 4.

3.	 Adapt the standard model with the system requirements by renaming the elements 
of the model and adding appropriate properties and types. This step will generate 
and an abstract typical initial model.

4.	 Refine the model as much as needed by formalizing and adding the remaining typi-
cal requirements as well as the establishment of proof obligations. At the end of this 
step, we get a typical concrete model.

5.	 Construct the system according to the concrete typical model which will be guaran-
teed to be correct by construction.

Figure 3 below illustrates the outlines of the proposed approach:

Formal approach to model complex adaptive computing systems using Event‑B

Agent

Agents can be defined as the smallest elements of a complex adaptive system, these 
agents have the capability to interact with each other in order to adapt, evolve and solve 
problems (Niazi 2017). The main purpose of the use of agents is that they can act sepa-
rately and independently as well as the ability to add and remove easily agents without 
stopping the system. Thus, we propose the following Definition 1 for an agent:
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Definition 1  An agent is the smallest element of a complex adaptive system that can 
act independently.

These agents are defined using a set of properties such as types and strategies that deter-
mine their behaviour in certain circumstances. Although these properties may seem very 
simple, the significant number of agents in the same CAS beside the variety of their proper-
ties arise explosively the difficulty of predicting system behaviour. Also, a simple change of 
a single property of a certain agent may cause a completely new complex and potentially 
novel behaviours of the system. Therefore, properly defining the agents and their properties 
is the most critical part of modelling a complex adaptive system (Akram and Niazi 2018).

For this purpose, we start with the following simple formalization shown in Listing 1 and 
2 that captures the agents’ main properties:

Fig. 3  Proposed approach
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MACHINE

…

INVARIANTS

Inv : Agent ∈ AGENTS

Inv : Location ∈ AGENTS→LOCATIONS

Listing 2. Location/agents typical invariants

We define a set AGENTS that refer to all possible agents that may exist in the sys-
tem currently, in the past or even in the future; therefore, the AGENTS set can be 
modelled as carried set and can be seen as a type of variables.

The location of an agent can affect many aspects of how it operates which makes 
formalizing it extremely important (Roundy et  al. 2018). We introduce a constant 
LOCATIONS denoting the natural coordinate space ℕ3 which formalize altitude, lon-
gitude and latitude. Then, we “link” agents with their locations by means of a total 
function from the set of AGENTS to the set of LOCATIONS.

When one or more agents share the same characteristics, it is possible to associ-
ate to these agents a type (Abar et al. 2017). Groups of agents of the same type are 
defined as subsets of the AGENTS set. For instance, to define 3 types of agents we use 
the following formalism in Listing 3:

CONTEXT

SETS

AGENTS

Type1

Type2

Type3

CONSTANTS

LOCATIONS

AXIOMS

axm   :    LOCATIONS = ℕ×ℕ×ℕ

axm : partition(AGENTS, Type1, Type2, Type3)

END

Listing 3. Types of agents

The partition predicate is an easy way to enumerate sets. Mathematically, the parti-
tion predicate is defined in (2):

where x and y are two subsets of a set S.

(2)partition
(

S, x, y
)

⇔ x ∪ y = S ∧ x ∩ y = ∅
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Each agent has a number of properties that describe it such as colour, speed, size, 
etc. These properties may change during the system lifetime in order to adapt, react or 
evolve (Mittal and Risco-Martín 2017). Therefore, we propose a modelization of these 
properties in term of a total function from the set of agents to the set that includes all the 
possible values of a certain property. This function can be denoted AgentPropertyi (this 
notation is necessary when the type of property values is not primitive). For instance, in 
order to describe the colour of an agent, we propose a function named “AgentColour” 
defined from the set AGENTS to the set COLOURS that include all possible colours that 
an agent may have. This method simplifies the modification of the colour of an agent by 
only modifying the value of AgentColour (agent) (Burns et  al. 2017). In general, for a 
certain property i we define the set of all its possible values in the context as a carrier set 
denoted PROPERTYi as shown in Listing 4. Then, we define the total function in Listing 
5 below:

CONTEXT
SETS

PROPERTYi
CONSTANTS

Value1
Value2
Value3
…

AXIOMS
…
axm   :    PROPERTYi={Value1, Value2, Value3, …}

END

Listing 4. Definition of properties set 

MACHINE
…

INVARIANTS
...

Inv : AgentPropertyi ∈ AGENTS→PROPERTYi

Listing 5. Agent properties total function

Reaction

Due to the unpredictable change of environment, each agent should have a strategy in 
term of stimulus/response that indicates what to do in which circumstances (Mathe-
son and Thompson-Schill 2019). A stimulus occurs by changing a certain factor (the 
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effect of the environment) that affect agent behaviour such as temperature, wind 
speed, light, etc. Sometimes, the agent should be able to react to a certain stimulus 
in order to remain functioning correctly (surviving) (Durniak et al. 2017). Therefore, 
for some stimulus, we should assign a response to guarantee the appropriate reaction. 
The appropriate response for a certain stimulus is up to the engineer to determine, 
while this is a typical problem—each problem has its own stimulus/response logic. 
The following state diagram in Fig. 4 describes the reaction process:

We propose in this paper an abstract formalization of this stimulus/response com-
bination according to the following Definition 2:

Definition 2  The reaction is adopting an appropriate response for an external stimulus.

The approach proposed in this paper to formalize the strategy is by means of two 
sets: STIMULUS and RESPONSES. Similarly to the AGENTS and PROPERTYi sets, 
STIMULUS and RESPONSES refer to all the possible stimulus and responses; hence 
there formalization in B language is similar to the previous ones.

To formalize the association between each stimulus of an agent with an appropriate 
response, we present the following total function in Listing 6:

MACHINE
…
INVARIANTS

...

Inv : AppropriateResponse ∈ AGENTS×STIMULUS→RESPONSES

Listing 6. Formalization of Stimulus/response associations.

In order to formalize the fact that agents in a CAS are able to react, we use an event 
that occurs each time a stimulus appears. In this event and for a certain agent that 
was affected by a certain stimulus, an appropriate response should take place and 
reconfigure the agent properties. This is in other words: reacting to stimulus.

The reaction event can be presented as follows in Listing 7:

Fig. 4  Reaction process
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Agent_reacting
ANY

agent
s

WHERE
grd1   :    agent ∈ AGENTS

grd2   :    s ∈ STIMULUS
THEN

act1   :    AgentProperty1(agent) ≔ Property1Response( agent ↦
AppropriateResponse(agent ↦ s))

act2 :    AgentProperty2(agent) ≔ Property2Response( agent ↦
AppropriateResponse(agent ↦ s))

…
END

Listing 7. Agents reaction event

PropertyiResponse is a function that determines for a certain agent the appropriate 
new value of the property i based on a specific response. The definition of this func-
tion is as follows in Listing 8:

Inv : PropertyiResponse ∈ AGENTS×RESPONSES→PROPERTIESi

Listing 8. Appropriate properties values determination function.

Interaction

In order to develop the responses to stimuli, agents should enrich consistently their 
knowledge base. The most efficient way to build their knowledge base is by interaction/
communication and sharing experiences (Conklin et  al. 2019; Sadri et  al. 2019). The 
interaction between two agents can be described as illustrated in the following Fig. 5:

The interaction in a complex adaptive system is constrained by either the physical 
location or logical localization. Therefore, the interaction of agents can be defined as 
follows:

Definition 3  Interaction is the exchange of information between agents in a complex 
adaptive system.

An agent can primarily interact in a direct way with the agents surrounding it (its 
neighbors). Hence, we should associate to each agent a number of neighbors which 
will at the same time define the structure of the whole system (notice that in some 
cases, other properties may be added such as the distance between two agents). This 
can be formalized by means of the following function in Listing 9:

Inv : Neighbors ∈ AGENTS→ ℙ(AGENTS)

Listing 9. Neighbors function
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ℙ is the power set function which refers to the set of all subsets of AGENTS.
The interaction of agents implies that each agent has a set of data called agent 

knowledge (Grillitsch et al. 2019). This knowledge helps the agents to make decisions, 
share knowledge, adapt and evolve. Such a concept is very typical hence we will pre-
sent an abstract formalization of this concept in term of a set of data associated with 
each agent. Listing 10 below presents the knowledge function as a total function from 
the set agents to the power set of data.

Inv : Knowledge ∈ AGENTS→ ℙ (DATA)

Listing 10. Knowledge function

where DATA is a carried set of data.
While we had presented the basic elements of interaction (neighbors and knowl-

edge), we can formalize the interaction between neighbors agents in term of an 
event that occur each time two agents interact or exchange data in order to learn 
(notice that the interaction as an agent affecting physically its neighbor is seen in our 
approach as a stimulus that was treated in the previous section). The agent interac-
tion event is formalized in Listing 11 as follows:

Agent_interacting
ANY

agent
neighbor
data

WHERE
grd1   :    agent ∈ AGENTS

grd2   :    neighbor ∈ Neighbors(agent)
grd3   :      data ∈ Knowledge(neighbor)

THEN
act1   :    Knowledge(agent) ≔ Knowledge(agent) ⋃ {data}

END

Listing 11. Interaction event

Fig. 5  Interaction process



Page 14 of 35Jarrar et al. Complex Adapt Syst Model             (2020) 8:3 

Adaptation

This concept was inspired from the biological adaptation which is defined as the pro-
cess of adapting to a certain environment to survive. In the same way, the adaptation of 
an agent in complex adaptive systems is the change of strategy in order to survive and 
guarantee the correct performance of its tasks (Aldrich et al. 2019). The following state 
diagram in Fig. 6 illustrates the adaptation process in a complex adaptive system:

We can define adaptation as follows in Definition 4:

Definition 4  Adaptation of an agent is changing its strategy to conform a change of 
environment.

The adaptation is necessary when the state of an agent is deteriorated because of the 
environment change; this means that a number of specific stimuli can be observed indi-
cating this change of environment. Therefore, a new strategy should be adopted to adapt 
to the new environment which can be formalized as the total function in Listing 12 that 

determine for each environment (set of stimuli) the strategy that should be adopted:

Inv : AdaptedStrategy ∈ P(STIMULUS)→( AGENTS×STIMULUS→RESPONSES)

Listing 12. Adapted strategy function

In order to formalize the adaptation of an agent, we present the following event that 
triggers for a certain agent when some stimuli are observed (Rozantsev et al. 2019). To 
make the event more accurate, we add two guards: the first ensure that the current strat-
egy is not the adapted one (grd3); while the second ensures the deterioration of the agent 
state (grd4). When all the guards are verified, the current strategy is changed by chang-
ing the AppropriateResponse. This is formalized as shown in Listing 13 below:

Fig. 6  Interaction process
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Agent_Adapting

ANY

Agent

Stimuli

WHERE

grd1   :    agent ∈ AGENTS

grd2   :     Stimuli ∈ P(STIMULUS)

grd4 :     AppropriateResponse≠ AdaptedStrategy(Stimuli)

grd3 :      state(Neighbors(agent) ⋃ {agent}) <  Previous_state(agent)

THEN

act1   :     AppropriateResponse ≔ AdaptedStrategy(Neighbors(agent) ⋃ 
{agent})

END

Listing 13. Adaptation event

Evolving

The evolution concept as illustrated in definition 5 was also inspired from the evolution 
theory in biology that can be defined as an improvement in the heritable biological char-
acteristics of a population over a long period of time in successive generations (Hall and 
Strickberger 2008).

Definition 5  Evolution in a complex adaptive system is developing gradually by 
improving agents strategies.

This evolution can be measured by the improvement of the whole system state. 
However, it is claimed in the complex adaptive system literature that no agent can 
visualize the state of the whole system; still, each agent can see its neighbors. Thus, 
we assume that agents are able to measure the state of the subsystem of their neigh-
bors (the agent itself included). This ability will help the agent to observe the effect of 
a change in its strategy on the subsystem and decide either it will help the system to 
improve or deteriorate. In addition to the ability to measure the neighbors’ subsys-
tem state, an agent should be able to memorize the before-change state to compare it 
with the after-change state; and memorize also the old strategy in order to reuse it if 
needed (the case of deterioration).

Figure 7 summarizes the proposed evolving approach:
The proposed evolution process is based on 3 phases:

•	 Evolution attempt starting: in this phase, the agent proposes a random new strategy 
by changing at least one stimulus/response combination and memorizes the previ-
ous strategy alongside the neighbors’ subsystem state.

•	 Deciding phase: during this phase, the agent measures the current state of the neigh-
bours’ subsystem and then compares it with the previous state in order to decide if 
the change is improving or deteriorating the system. This phase should occur after 
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a certain time from the first one to give the agent time to observe the after-change 
state of the subsystem.

•	 Approving/disapproving phase: lastly, the agent may approve the change of strategy 
and evolve or disapprove changes and readopt the old strategy. If the evolution is 
approved then the agent will share this experience with others so that they may try 
the same thing. Otherwise, the agent readopts the old strategy that was previously 
memorized during the evolution attempt starting phase.

Notice that this process is based on the generation of random strategies; thus, 
the system should start with a predefined acceptable strategy. Formally, this can be 
defined in the initialization event (the first event that triggers at the beginning of the 
system lifetime).

To translate our proposed process of evolution into Event-B, we need to start with 
the basic elements and abilities that an agent needs to be able to evolve. Firstly, we 
introduce the total function Previous_strategy defined from the AGENTS set to 
(AGENTS × STIMULUS → RESPONSES) that allows the agent to memorize the pre-
vious strategy. Secondly, the total function Previous_state defined from AGENTS 
to natural numbers that represent the before-change neighbours’ subsystem state in 
term of a natural number; this number increases if the system improves and decreases 
if it deteriorates. Finally, we present the State function that formalizes the assumption 
that an agent is able to measure the state of a subsystem. This state function is defined 
from the power set of AGENTS to a certain natural number. The formalization of the 
functions used during evolution is presented in Listing 14 below:

Fig. 7  Evolution process
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Inv : Previous_strategy ∈ AGENTS→( AGENTS×STIMULUS→RESPONSES)

Inv : Previous_state ∈ AGENTS→ ℕ

Inv : State ∈ P(AGENTS)→ ℕ 

Listing 14. Evolution functions

The first event that triggers during evolution attempt starting phase is the memo-
rization event that forms a sort of backup data before starting the evolution attempt. 
The second event in this phase allows the agent to change its strategy. However, dur-
ing modelling, we figure out that if two neighbours are attempting to evolve the pro-
cess may fail because in this case the after-change state that an agent will observe 
does not reflect exactly the effect of the change in its strategy; rather than that, it 
reflects the effect of the change of both strategies. To avoid this problem, we add a 
new function that its value is equal to 1 if an agent is currently in the process of evo-
lution and 0 if not. This function can be formalized as shown in Listing 15 below:

Inv : Evolving_state ∈ AGENTS→ {0,1}

Listing 15. State of evolution function

This function will help us to ensure before starting the evolution attempt that all the 
neighbours of the agent are not currently attempting to evolve.

Additionally, the process of evolution is related to the concept of time. The formali-
zation of this concept proposed in this approach is inspired by the time pattern pro-
posed by Dominique Cansell et al. (2007). This formalization is based on formalizing 
the time as a natural number that increases over time. The value of this variable will 
represent the time when the last time the memorization event trigger which is the 
evolution attempt starting moment. Thus, the memorization and changing strategy 
events can be formalized as shown in the following Listing 16 and 17:

Memorization

ANY

Agent

Current_time 

WHERE

grd1   :    agent ∈ AGENTS 

THEN

act1   :    Previous_state(agent) ≔ state(Neighbors(agent) ⋃ {agent})

act2   :    Previous_strategy(agent) ≔ AppropriateResponse

act3   :    time ≔ current_time

END

Listing 16. Memorization event
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Change_strategy

ANY

Agent

strategy

WHERE

grd1   :    agent ∈ AGENTS 

grd2   :     strategy ∈ AGENTS×STIMULUS→RESPONSES

grd3   :      ∀a· a∈ Neighbors(agent) ⇒ Evolving_state(a)=0

grd4   :      Evolving_state(agent) = 0

THEN

act1   :    AppropriateResponse ≔ strategy

act2  :    Evolving_state(agent) ≔ 1

END

Listing 17. Strategy change event

One last thing should be mentioned in this first phase, since the strategy function 
is taking the agent as a parameter then it can access to all its properties and most 
importantly its knowledge. This allows the agent to evolve considering its previous 
experience and without repeating the same attempt several times.

The decision of either the new strategy is helping the system to evolve or deteriorate 
is done after a certain time (denoted separation_time) to allow the agent to observe 
the effect of the new strategy (Son et  al. 2019). After that, the agent measures the 
state of the neighbours’ subsystem and compares it with the previous state and then 
decides either the new strategy should be approved or disapproved. For this purpose, 
we present the following two events in Listing 18 and 19:

Approving_change

ANY

Agent

Current_time

WHERE

grd1   :    agent ∈ AGENTS 

grd2   :     Evolving_state(agent) = 1

grd3   :      current_time > time + separation_time

grd4   :      state(Neighbors(agent) ⋃ {agent}) > Previous_state(agent)

THEN

act1   :     Knowledge ≔ (λa·a∈Neighbors(agent) ∣ Knowledge(agent) ⋃ 
StrategyToKnowledge(AppropriateResponse ↦ Approved)) ⋃ 
(λa·a∉Neighbors(agent) ∣ Knowledge(agent))

act2  :    Evolving_state(agent) ≔ 0

END

Listing 18. Approving change event
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Disapproving_change

ANY

Agent

Current_time

WHERE

grd1   :    agent ∈ AGENTS 

grd2   :     Evolving_state(agent) = 1

grd3   :      current_time > time + separation_time

grd4   :      state(Neighbors(agent) ⋃ {agent}) ≤  Previous_state(agent)

THEN

act1   :     AppropriateResponse ≔ Previous_strategy(agent)

act2  :    Knowledge ≔ (λa·a∈Neighbors(agent) ∣ Knowledge(agent) ⋃ 
StrategyToKnowledge(AppropriateResponse ↦ Disapproved)) ⋃ 
(λa·a∉Neighbors(agent) ∣ Knowledge(agent))

act3   :    Evolving_state(agent) ≔ 0

END

Listing 19. Disapproving change event

In both events, the second guard helps to ensure that the agent is in the evolution 
process; at the same time, the third guard guarantees the minimum separation time. 
The decision about the strategy is done by means of the fourth guard which compare 
the current and previous state of the subsystem. If the subsystem is evolving then 
the approving event triggers which share this experience –the new strategy helps the 
agent to evolve- and terminate the evolution process. As you may notice, the agent 
should be able to translate the experience into data that can be added to the cur-
rent knowledge of neighbours. Therefore, we introduce in Listing 20 the StrategyTo-
Knowledge function that translates a strategy and decision into data:

Inv : StrategyToKnowledge ∈ (AGENTS×STIMULUS→RESPONSES) 
×{Approved,Disapproved} → P(DATA)

Listing 20. Converting strategy to knowledge function

In the approving event, the StrategyToKnowledge function takes Approved as the 
second parameter while in the disapproving event it takes Disapproved. Sharing the 
experience of evolution or deteriorating will give a high priority of trying the new 
strategy in future evolution attempts of neighbours in the evolution case, and ensure 
high avoidance possibility of the strategy in the case of deteriorating.

Case study
This section presents a case study to extrapolate results of our contributions and 
provide a means for understanding our formal approach with greater clarity.
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Air traffic control in an airport vicinity

Air traffic control (ATC) is a service provided currently by controllers located in the 
control tower. The main responsibility of the controllers is organizing and expedit-
ing the air traffic flow while preventing collisions and minimizing delays (Fact Sheet 
2010). This service is performed due to the structure of the communication network 
between the aircrafts and the control tower. Figure 8 below illustrates this structure:

Therefore, if the control tower has a technical issue or natural disaster, the aircrafts will 
not be able to react autonomously. For this reason, we propose a complex adaptive sys-
tem structure for ATC system making aircraft able to react to the different kind of exter-
nal stimuli such as Headwind, Crosswinds and Tailwinds. Aircrafts should also be able 
to interact and exchange data over a network in order to provide a more general vision 
about the surrounding environment. Based on this vision, the aircrafts may need to adapt 
by changing its way of flying and reacting (it strategy) which highly improve their perfor-
mance to carry out their tasks. This interaction and adaptation will allow the aircrafts to 
build a rich knowledge base that permits them to perform attempts to evolve. However, 
automated evolution is never guaranteed which raises the risk of deterioration; therefore, 
aircrafts should be able to observe the result of their attempts to prevent this risk.

The purpose of this case study is presenting a brief example of how to apply the pro-
posed approach in the air traffic control system. This work is based on our previous 
work in this domain (Blok et al. 2018; Jarrar and Balouki 2018a, b; Jarrar et al. 2017).

Requirement document

Since the main purpose of this work is guiding and building the first step of model-
ling correctly complex adaptive systems, we need to reorganize and reformulate the 
requirement document in a more formal way. JR Abrial proposes in Abrial (2010) an 
approach of presenting the requirement document in a more suitable form based on 
presenting it along two axes: Fun that refers to the functional requirements of the sys-
tem; and Env that refer to environment assumptions and non-functional requirements.

The requirement document presented here focus on the future vision of the most 
popular organizations in the domain of airspace systems: International Civil Aviation 

Fig. 8  Air traffic control structure
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Organization ICAO, Federal Aviation Administration FAA, and National Aeronaut-
ics and Space Administration (NASA) (In Focus 2018; Fact Sheet 2010; Department 
of Transportation Federal Aviation Administration 2017; National Aeronautics and 
Space Administration NASA 2009). Their vision focuses on making the aircrafts 
smart and minimizes as much as possible the participation of human beings to avoid 
errors. The proposed requirements document is as follows:

The aircrafts of the system are intelligent and able to react independently Fun 1

Aircrafts are either fixed wings or rotorcrafts Fun 2

Each aircraft has a manufacturer Fun 3

Aircrafts always have vertical and direction angle as well as linear speed Fun 4

Figure 9 illustrates the vertical and direction angle of an aircraft:

Different types of winds may be faced during flights: Headwind, Crosswinds and Tailwinds Env 1

Aircrafts are able to react in the case of Headwind, Crosswinds and Tailwinds Fun 5

Aircrafts are able to interact and exchange data over a network Fun 6

Aircrafts should keep a minimum separation distance to prevent collisions Fun 7

Each aircraft has its own knowledge base Fun 8

The environment of the system is unpredictably and frequently changeable Env 2

Aircraft are able to adapt in case of environment changes Fun 9

Aircrafts are supported with a strategy that allows it to only evolve and prevented it from deterioration Fun 10

Formalization of air traffic control

Formalizing agents

In the air traffic control system, the agents can be considered as the aircrafts and they 
have different properties. In this case study, we propose the following properties: type, 
manufacturer, speed, vertical angle, directional angle and location (Fun 4).

We introduce two types of aircrafts: fixed-wing and rotorcrafts (Fun 2). We also present 
the following manufacturer: Airbus, Boeing, Bombardier, Cessna, and Cirrus (Fun 3).
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The context of the system is formalized as follows in listing 21:

CONTEXT

SETS

AIRCRAFTS

MANUFACTURER

CONSTANTS

Fixed_wings

Rotorcrafts

LOCATIONS

Airbus

Boeing

Bombardier

Cessna

Cirrus

AXIOMS

axm   1 :    LOCATIONS = ℕ×ℕ×ℕ

axm 2  : Fixed_wings ∈ ℙ(AIRCRAFTS) 

axm 3   : Rotorcrafts ∈ ℙ(AIRCRAFTS) 

axm 4  : partition(AIRCRAFTS, Fixed_wings, Rotorcrafts)

axm 5 : partition(MANUFACTURER, {Airbus}, {Boeing}, {Bombardier} , 
{Cessna}, {Cirrus})

END

Listing 21. Aircrafts Locations/Types/Manufacturers modelisation

Fig. 9  Direction and vertical angles
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In the machine, we present the set of all functions that formalize the association 
agent-property (Jarrar et al. 2017). This can be formalized as shown in Listing 22:

INVARIANTS

Inv 1 : aircraft ∈ AIRCRAFTS

Inv 2 : Location ∈ AIRCRAFTS→LOCATIONS

Inv 3 :AircraftManufacturer ∈ AIRCRAFTS→MANUFACTURER

Inv 4 : AircraftSpeed ∈ AIRCRAFTS→ ℕ

Inv  5  : VerticalAngle ∈ AIRCRAFTS→ 0..360

Inv  6  : DirectionalAngle ∈ AIRCRAFTS→ 0..360

Listing 22. Configuration functions

Formalizing reaction of aircrafts

In this section, we will present an example of how to model aircraft reaction in case of 
strong wind. The wind is one of the main elements that affect an aircraft’s flight; there-
fore it is one of the most important stimuli that should be considered when modelling 
aircraft reaction. The headwind is preferred by pilots for landing and taking off due to its 
benefits of using less runway and low ground speed at touchdown. On the other hand, 
Crosswinds and tailwinds are more difficult to deal with (Env 1), and aircrafts should 
adapt to the situation either by changing speed, angles or even location (Fun 5). To sum-
marise, the wind may affect three properties: speed, vertical angle, and directional angle 
(iFACTS 2018).

To formalize the aircrafts reaction, the first elements that should be defined are STIM-
ULUS and RESPONSES. All possible stimuli and responses should be formalized as 
shown in Listing 23 below:
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CONTEXT

SETS

…

STIMULUS

RESPONSES

CONSTANTS

…

Headwind
Crosswinds
Tailwinds
R_Headwind
R_Crosswinds
R_Tailwinds

AXIOMS

...

axm 4  : partition(STIMULUS, {Headwind}, {Crosswinds},{Tailwinds})

axm 5  : partition(RESPONSE, {R_Headwind}, {R_Crosswinds}, 
{R_Tailwinds})

END

Listing 23. Context including Stimulus and responses

In the machine, the AppropriateResponse function should be added beside the differ-
ent function that allows adaptation of angular and location properties; these are Loca-
tionResponse, VerticalAngleResponse, and DirectionalAngleResponse. These functions 
are presented as invariants in Listing 24:

Inv 7 : AppropriateResponse ∈ AIRCRAFTS×STIMULUS→RESPONSES

Inv 8 : LocationResponse ∈ AIRCRAFTS×RESPONSES→LOCATIONS

Inv 9 : VerticalAngleResponse ∈ AIRCRAFTS×RESPONSES→0..360

Inv 10 : DirectionalAngleResponse ∈ AIRCRAFTS×RESPONSES→ 0..360

Listing 24. Reaction functions

Finally, the reacting event can be formalized as shown in Listing 25:
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Aircrafts_reacting
ANY

a
s

WHERE
grd1   :    a ∈ AIRCRAFTS

grd2   :    s ∈ STIMULUS
THEN
act1   : Location (a) ≔ LocationResponse( a ↦ AppropriateResponse(a ↦ s))

act2   : VerticalAngle (a) ≔ VerticalAngleResponse( a ↦ AppropriateResponse(a
↦ s))

act3   : DirectionalAngle (a) ≔ DirectionalAngleResponse( a
↦AppropriateResponse(a ↦ s))

END

Listing 25. The reaction of aircrafts event

Formalizing interaction between aircrafts

The first thing that should be presented to guarantee the interaction between aircraft is 
modelling the structure of aircrafts network (Fun 6); this can be formalized by means of 
the neighbors function. Besides, we introduce the knowledge function that formalizes 
the knowledge base of each aircraft (Fun 8). For air traffic management systems, aircrafts 
should always maintain a minimum distance between them which makes the distance 
between aircrafts also an important factor in the system (In Focus 2018). Therefore, we 
present an additional function formalizing the distance between two aircrafts. This can 
be formalized in Listing 26 as follows:

Inv 11 : Neighbors ∈ AIRCRAFTS→P(AIRCRAFTS)

Inv 12 : Knowledge ∈ AIRCRAFTS→P(DATA)

Inv 13   :  Distance ∈ LOCATIONS×LOCATIONS → ℕ 

Listing 26. Interaction of aircrafts functions

The knowledge of aircraft is building by exchanging data over the network with 
neighbors. This can be formalized as shown in the Listing 27 below:
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Aircraft_interacting
ANY

a
neighbor
data

WHERE
grd1   :    a ∈ AIRCRAFTS

grd2   :    neighbor ∈ Neighbors(a)

grd3   :      data ∈ Knowledge(neighbor)

THEN
act1   :    Knowledge(a) ≔ Knowledge(a) ⋃ {data}

END

Listing 27. Interaction of aircrafts event

Finally, the distance and location functions can be used to guarantee a minimum 
separation distance between aircraft during flying in the airport airspace (Fun 7). If 
two aircrafts are keeping this distance, collision will be strongly avoided as well as 
wake turbulence. The minimum distance is fixed and we denoted it Min_distance 
constant. To ensure that the minimum distance will be kept the following invariant 
presented in Listing 28 must be preserved:

Inv14 :    ∀a,b· a∈AIRCRAFTS ∧ b∈AIRCRAFTS ⇒ 

distance(location(a)↦location(b))≥Min_distance

Listing 28. Separation distance invariant.

Formalizing Adaptation of aircrafts

In order for an aircraft to adapt (Fun 9), it is necessary to define for each change 
of environment (P(STIMULUS)) a certain strategy (AIRCRAFTS × STIMU-
LUS → RESPONSES) that is more suitable to the new environment. This is illumi-
nated in Listing 29 below:

Inv 15 : AdaptedStrategy ∈ P(STIMULUS)→( AIRCRAFTS ×STIMULUS
→RESPONSES)

Listing 29. Adapted strategy for aircrafts

The event responsible for adapting aircrafts is denoted Aircraft_Adapting. This 
event is constrained by the condition that the current state is worse than the previous 
one, and the condition that the current strategy is not the adapted one. In this case, 
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the Aircraft_Adapting event presented in Listing 30 will switch the current strategy to 
the adapted one defined by the AdaptedStrategy function.

Aircraft_Adapting

ANY

a

Stimuli

WHERE

grd1   :    a ∈ AIRCRAFTS

grd2   :     Stimuli ∈ P(STIMULUS)

grd3 :     AppropriateResponse≠ AdaptedStrategy(Stimuli)

grd4 :      state(Neighbors(a) ⋃ {a}) <  Previous_state(a)

THEN

act1   :     AppropriateResponse ≔ AdaptedStrategy(Stimuli)

END

Listing 30. Aircrafts adaptation event

Formalizing the evolution process

Before starting the formalization of the evolution process (Fun 10), we present the Previ-
ous_strategy and Previous_state in order to make a backup of the aircraft state while we 
cannot ensure if the evolution will succeed or not. Besides, we introduce the state func-
tion that formalized a feature that an aircraft may have easily; this feature is the collec-
tion of information of its surrounding aircrafts and evaluates the state of the neighbours’ 
subsystem state. Also, a total function will be needed to recognize either an aircraft is 
in the process of evolution attempt or not; this is necessary to avoid multiple evolution 
attempts of the same aircraft at the same time. The functions need for aircrafts evolution 
as presented in Listing 31 below:

Inv16:Previous_strategy∈AIRCRAFTS→(AIRCRAFTS×STIMULUS→RESPONSES )

Inv 17 : Previous_state ∈ AIRCRAFTS→ ℕ

Inv 18 : State ∈ P(AIRCRAFTS)→ ℕ 

Inv 19 : Evolving_state ∈ AIRCRAFTS→ {0,1}

Listing 31. Aircrafts evolution functions 

The first event that triggers in the process of evolution is the Memorization event pre-
sented in Listing 32. This event allows the backup of before-change state and strategy as 
well as the time when the process started.
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Memorization

ANY

a

Current_time

WHERE

grd1   :    a ∈ AIRCRAFTS

grd2   :    Current_time ∈ ℕ

THEN

act1   :    Previous_state(a) ≔ state(Neighbors(a) ⋃ {a})

act2   :    Previous_strategy(a) ≔ AppropriateResponse

act3   :    time ≔ current_time

END

Listing 32. Aircrafts memorization event

The next event is called Change_strategy; this event changes the strategy of a certain 
aircraft that has no neighbor in the process of evolution as shown in Listing 33. How-
ever, if two neighbors are changing their strategies at the same time, the effect of these 
strategies will not be clear while these two neighbors will share some neighbors that will 
be affected by both strategies changes. Therefore, we allow the change of strategy for 
only aircrafts that do not have any neighbor in the process of evolution.

Change_strategy

ANY

a

strategy

WHERE

grd1   :    a ∈ AIRCRAFTS

grd2   :     strategy ∈ AIRCRAFTS×STIMULUS→RESPONSES

grd3   :      ∀x· x∈ Neighbors(a) ⇒ Evolving_state(x)=0

grd4   :      Evolving_state(a) = 0

THEN

act1   :    AppropriateResponse ≔ strategy

act2  :    Evolving_state(a) ≔ 1

END

Listing 33. Changing aircraft strategy event

After a certain time denoted separation_time, the aircraft may decide if the change 
should be approved or not based on the before and after-change states. If the before 
change state is better than the after change state then the Approving_change event will 
trigger, otherwise, the one who will trigger is the Disapproving_change event. When the 
Approving_change trigger, it enriches the knowledge of the evolving aircraft and this 
knowledge will be shared with its neighbors by means of interaction; and then it ter-
minates the process of evolution by associating to the evolving state the value zero as 
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shown in Listing 34 (Department of Transportation Federal Aviation Administration 
2017). In the same way, if disapproving_change trigger then the previous strategy backed 
up during the memorization event will be readopted; this is shown in Listing 35. Also, 
the knowledge of the aircraft will be enriched to avoid trying the same strategy over and 
over. These two events can be formalized as belows:

Approving_change

ANY

a

Current_time

WHERE

grd1   :    a ∈ AIRCRAFTS

grd2   :    Current_time ∈ ℕ

grd3 :     Evolving_state(a) = 1

grd4 :      current_time > time + separation_time

grd5 :      state(Neighbors(a) ⋃ {a}) > Previous_state(a)

THEN

act1   :     Knowledge ≔ (λx·x∈Neighbors(a) ∣ Knowledge(a) ⋃ 
StrategyToKnowledge(AppropriateResponse ↦Approved)) ⋃ 
(λx·x∉Neighbors(agent) ∣ Knowledge(a))

act2  :    Evolving_state(agent) ≔ 0

END 

Listing 34. Approving evolution of aircraft event 

Disapproving_change

ANY

a

Current_time

WHERE

grd1   :    a∈ AIRCRAFTS

grd2   :    Current_time ∈ ℕ  

grd3   :     Evolving_state(a) = 1

grd4 :      current_time > time + separation_time

grd5 :      state(Neighbors(a) ⋃ {a}) ≤  Previous_state(a)

THEN

act1   :     AppropriateResponse ≔ Previous_strategy(a)

act2  :    Knowledge ≔ (λx·x∈Neighbors(a) ∣ Knowledge(a) ⋃ 
StrategyToKnowledge(AppropriateResponse ↦Disapproved)) ⋃ 
(λx·x∉Neighbors(a) ∣ Knowledge(a))

act3   :    Evolving_state(a) ≔ 0

END

Listing 35. Disapproving evolution of aircraft event
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Before starting the proof verification, one last event should be added. This event is 
called the INITIALISATION event; it is an event without guards that what happen at the 
beginning. In general, this event initializes all the variables in the proposed model. The 
Listing 36 below presents the initialization of all the variables:

INITIALISATION

BEGIN

act1   :    aircraft :∈ AIRCRAFTS 

act2   :    location :∈ AIRCRAFTS→LOCATIONS 

act3   :    AircraftManufacturer :∈ AIRCRAFTS→MANUFACTURER 

act4   :    AircraftSpeed :∈ AIRCRAFTS→ ℕ

act5   :    verticalAngle :∈ AIRCRAFTS→ 0 360

act6   :    DirectionalAngle :∈ AIRCRAFTS→ 0 360 

act7   :    AppropriateResponse :∈ AIRCRAFTS×STIMULUS→RESPONSES 

act8   :    LocationResponse :∈ AIRCRAFTS×RESPONSES→LOCATIONS 

act9   :    VerticalAngleResponse :∈ AIRCRAFTS×RESPONSES→0 360 

act10   :    DirectionalAngleResponse :∈ AIRCRAFTS×RESPONSES→ 0 360 

act11   :    Neighbors :∈ AIRCRAFTS→ℙ(AIRCRAFTS) 

act12   :    Knowledge :∈ AIRCRAFTS→ℙ(DATA) 

act13   :    Distance :∈ LOCATIONS×LOCATIONS → {Min_distance}  

act14   :    AdaptedStrategy :∈ ℙ(STIMULUS)→( AIRCRAFTS×STIMULUS
→RESPONSES) 

act15   :    Previous_strategy:∈AIRCRAFTS→(AIRCRAFTS × STIMULUS
→RESPONSES ) 

act16   :    Previous_state :∈ AIRCRAFTS→ ℕ

act17   :    State :∈ ℙ(AIRCRAFTS)→ ℕ

act18   :    Evolving_state :∈ AIRCRAFTS→ {0,1} 

act19   :    time≔0 

act20   :    Separation_time :∈ ℕ

act21   :    StrategyToKnowledge :∈ (AIRCRAFTS×STIMULUS→RESPONSES) ×
{Approved,Disapproved} → ℙ(DATA) 

END

Listing 36. INITIALIZATION Event

Verification and validation
In this section, we are interested in experiments to validate our work. To do this, we 
used a verification using proof obligations and verification using ProB animator.
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Verification using proof obligations

In order to guarantee the correctness of the proposed model in the case study, we use 
the Rodin platform to perform proof obligations. Table 1 presented below illuminate sta-
tistics about the established proofs:

This table is generated automatically by Rodin and presents the number of proofs gen-
erated including manual (6) and automatic (109) proofs. Most of these proofs are Invari-
ants preservation verifications which guarantee that all the invariants are maintained 
verified during the system lifetime. Therefore, the construction of a system based on the 
proposed model will generate a correct by construction system.

Verification using ProB animator

The validation of invariants preservation guarantees that all the before and after event 
states verify always all the invariants, which is a very critical validation requirement. 
Still, this validation is not enough to ensure the correctness; however, in some cases, 
we may arrive at a state where not guard is verified. In these cases, all events will be 
prevented from triggering since their guards are not verified. This is why another type of 
validation is needed which is the Deadlock Freedom.

In order to guarantee the deadlock freedom, two methods are provided: Invariant 
preservation of one additional invariant, and model checking through animation (Bozga 
et al. 2019). The first method is based on adding an invariant that include the disjunction 
of all the model events guards. This method guarantees the deadlock-freedom through 
ensuring that at least one of the guards is verified no matter what is the state of the sys-
tem. Listing 37 illustrates the invariant of deadlock freedom:

Inv14 :   (∃a,s· a ∈ AIRCRAFTS ∧ s ∈ STIMULUS) ∨

(∃a, neighbour, data· a ∈ AIRCRAFTS ∧ neighbor ∈ Neighbors(a) ∧ data  ∈
Knowledge(neighbor) ∨

(∃a,stimuli· a ∈ AIRCRAFTS stimuli  ∈ ℙ(STIMULUS) ∧ AppropriateResponse 
≠ AdaptedStrategy(stimuli) ∧ State(Neighbors(a) ∪ {a}) <  Previous_state(a) ) 
∨

(∃a, Current_time· a ∈ AIRCRAFTS ∧ Current_time ∈ ℕ) ∨

(∃a, strategy· a ∈ AIRCRAFTS ∧ strategy ∈
AIRCRAFTS×STIMULUS→RESPONSES ∧ ∀x· x∈ Neighbors(a) ⇒
Evolving_state(x)=0 ∧ Evolving_state(a) = 0) ∨

(∃a, Current_time· a ∈ AIRCRAFTS ∧ Current_time ∈ ℕ ∧ Evolving_state(a) = 
1 ∧ Current_time > time + Separation_time ∧ State(Neighbors(a) ∪ {a}) > 
Previous_state(a)) ∨

(∃a, Current_time· a∈ AIRCRAFTS ∧ Current_time ∈ ℕ ∧ Evolving_state(a) = 
1 ∧ Current_time > time + Separation_time ∧ State(Neighbors(a) ∪ {a}) ≤  
Previous_state(a)) 

Listing 37. Deadlock-freedom verification invariant

As you may notice, the invariant is overcharged and contain a significant number of 
predicate which complicates the establishment of the invariant preservation proof. 
Therefore, the second method based on model checking through animation is more 
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suitable for this kind of verification. In almost all cases, if there are deadlocks in the 
model they will be revealed through animating the model several times with a big num-
ber of steps. For this task, we use a tool called ProB Animator. ProB is a feature of the 
Rodin platform that allows the animation, constraint solving and model checking of 
models written in the B-language (Körner and Bendisposto 2018). We have used this 
tool to animate our model using one hundred steps and the model always was free of 
deadlocks. Figure 10 illustrates the result of ProB model checking with a total of 14,568 
transitions that visited 4779 nodes. During this check no deadlock or invariant violation 
was detected which highly guarantees Deadlock freedom in our model. All experiments 
were conducted on a 64-bit PC, Windows 7 Professional operating system, an Intel Core 
i7, 2.13 GHz Processor with 4 cores and 4 GB RAM.

To conclude, our approach allows the creation of a model that is verified by proof 
obligations and animation; as a result, a system constructed based on this model will 
be correct by construction. Therefore, our approach provides a systematic way to build 
highly verified formal models of computing complex adaptive systems using the Event-B 
method.

Table 1  Rodin report

Element name Total Auto Manual

ATC system 115 109 6

Context 7 7 0

Machine 108 102 6

Fig. 10  Deadlock-freedom verification screenshot
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Conclusion
We have introduced the steps and reasoning involved in the construction of a model of 
complex adaptive systems using the Event-B formal method. The main contribution is 
presenting a methodology for modelling that can be used to develop any complex adap-
tive systems. We cover the most important concepts proposed by the most well-known 
works in this domain, which facilitate the development of such a complex system. 
According to the requirements document, the developers of the system may add more 
refinements by including their typical requirements to build a customized model suit-
able to their cases. To illustrated the proposed approach, we have presented a use case of 
an air traffic control system. The requirement document of this use case was build based 
on several organizations descriptions (FAA, ICAO, and NASA). After the application of 
the approach, a model, that includes all these requirements in addition to complex adap-
tive systems concepts,has been produced. The validation of the model was guaranteed 
by two types of verifications: proof obligations using Rodin and Deadlock freedom using 
ProB. Therefore, the correctness of the generated model of the case study is guaranteed 
which demonstrate the validity of the proposed approach.

Due to the huge number of concepts and characteristics of Complex Adaptive Sys-
tem, the presentation of a methodology to formalize them all in a single work is not an 
easy task. Therefore, we intend, In future works, to improve the proposed approach by 
considering the rest of the complex adaptive systems concepts such as populations that 
refer to collections of agents or strategies, self-similarity, interaction pattern, selection of 
strategies, emergence and self-organization. Moreover, the combination of this approach 
with other verification methods such as model checking will highly minimize the prob-
ability of failures. Furthermore, we aim to develop a complete recommendation for other 
standardizations such as QoS and RM-ODP (Jarrar et al. 2017; Jarrar and Al 2019).
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